
5.1 Transfer Switch Equipment—Product Overview
Product Selection Guide V2-T5-2
Product Description V2-T5-5
Application Description V2-T5-5
5.2 Contactor-Based Transfer Switches
Open Transition, 40-1600 A V2-T5-8
Open Transition, Service Entrance Rated, 40-1600 A V2-T5-14
Closed Transition, 40-1200 A V2-T5-21
Open and Closed Transition, 1600-3000 A V2-T5-25
5.3 Bypass Isolation Contactor-Based Transfer Switches
Open and Closed Transition, Dual Drawout, 40-1600 A V2-T5-29
Open and Closed Transition, Drawout ATS, Fixed Bypass, 40-1200 A V2-T5-35
5.4 Molded Case-Based Transfer Switches
Open Transition, Manual Operation, 30-1000 A V2-T5-41
Open Transition, Non-Automatic Operation, 30-1000 A V2-T5-45
Open Transition, Automatic Operation, 30-1000 A V2-T5-48
5.5 Power Frame-Based Transfer Switches
Open and Closed Transition, 200-5000 A V2-T5-55
5.6 Bypass Isolation Power Frame-Based Transfer Switches
Open and Closed Transition, 200-5000 A V2-T5-65
5.7 Automatic Transfer Controllers
Product Selection Guide V2-T5-71
ATC-100 Controller V2-T5-75
ATC-300+ Controller V2-T5-77
ATC-900 Controller V2-T5-80
Controller Replacement Guide V2-T5-91
5.8 HMi Remote Annunciator Controller
Product Description V2-T5-96
Features and Benefits V2-T5-96
Standards and Certifications V2-T5-96
Technical Data and Specifications V2-T5-97
Wiring Diagrams V2-T5-98
Dimensions V2-T5-99
5.9 Transfer Switch Features - Standard and Optional
Transfer Switch Features Tables V2-T5-100
Feature Description V2-T5-116
Glossary V2-T5-124
5.10 kW Conversions
kW Conversion Chart V2-T5-125

Revision notes

Volume 2-Commercial Distribution, CA08100003E

Tab 5-Transfer Switches

Revision date	Section	Change page(s)	Description
$02 / 05 / 2018$	All	All	Major overhaul to complete tab, all pages revised
$02 / 08 / 2018$	All	All	Revision date changed to February 2018

Powering Business Worldwide

Contents

Description	Page
Product Description .	V2-T5-5
Application Description	

Product Selection Guide

Transfer Switch Products

[^0]Key: $D 0=$ Drawout
FM = Fixed mounted
FM $=$ Fixed mounted
MCB $=$ Molded case breaker
MCS = Molded case switch

Product Selection Guide

Transfer Switch Products, continued

Catalog Numbering System	Contactor-Based, Service Entrance Rated 40-1600 A (up to 480 Vac)	Molded Case-Based, Manual 30-1000 A (up to 600 Vac)	Molded Case-Based, Non-Automatic 30-1000 A (up to 600 Vac)	Molded Case-Based, Automatic 30-1000 A (up to 600 Vac)
Type	AT = Automatic (open transition) Refer to Page V2-T5-14	MT = Manual (open transition) Refer to Page V2-T5-41	NT = Non-Automatic (open transition) Refer to Page V2-T5-45	AT = Automatic (open transition) Refer to Page V2-T5-48
Orientation	C = Contactor	$\begin{aligned} & \text { H = Horizontal } \\ & \text { V = Vertical } \end{aligned}$	$\begin{aligned} & \text { H = Horizontal } \\ & \text { V = Vertical } \end{aligned}$	$\begin{aligned} & \text { H = Horizontal } \\ & \text { V = Vertical } \end{aligned}$
Logic	$\begin{aligned} & 3=\text { ATC- } 300+ \\ & 9=\text { ATC- } 900 \end{aligned}$	X = No Logic	$\mathrm{E}=$ Electromechanical	$\begin{aligned} & 1=\text { ATC- } 100 \\ & 3=\text { ATC-300+ } \\ & 9=\text { ATC- } 900 \end{aligned}$
Mechanism	$\begin{aligned} & \text { C2 }=\text { In-phase only } \\ & \text { C3 }=\text { Time delay neutral (TDN) only } \\ & \text { C5 }=\text { In-phase } / \text { TDN transfer } \end{aligned}$	$\begin{aligned} & \mathrm{FD}=30-150 \mathrm{~A} \\ & \mathrm{KD}=150-300 \mathrm{~A} \\ & \mathrm{LD}=400-600 \mathrm{~A} \\ & \mathrm{MD}=600-800 \mathrm{~A} \\ & \mathrm{NB}=800-1000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{FD}=30-150 \mathrm{~A} \\ & \mathrm{KD}=150-300 \mathrm{~A} \\ & \mathrm{LD}=400-600 \mathrm{~A} \\ & \mathrm{MD}=600-800 \mathrm{~A} \\ & \mathrm{NB}=800-1000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{FD}=30-150 \mathrm{~A} \\ & \mathrm{KD}=150-300 \mathrm{~A} \\ & \mathrm{LD}=400-600 \mathrm{~A} \\ & \mathrm{MD}=600-800 \mathrm{~A} \\ & \mathrm{NB}=800-1000 \mathrm{~A} \end{aligned}$
Mount	Fixed mount C $=100 \%$ rated circuit breaker (normal side)	Fixed mount $A=F M, N(M C S), E(M C S)$ $B=F M, N(M C B), E(M C B)$ $\mathrm{C}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCS})$ $\mathrm{D}=\mathrm{FM}, \mathrm{N}(\mathrm{MCS}), \mathrm{E}$ (MCB)	Fixed mount $\mathrm{A}=\mathrm{FM}, \mathrm{N}$ (MCS), E (MCS) $\mathrm{B}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCB})$ $\mathrm{C}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCS})$ $\mathrm{D}=\mathrm{FM}, \mathrm{N}(\mathrm{MCS}), \mathrm{E}(\mathrm{MCB})$	Fixed mount $A=F M, N(M C S), E(M C S)$ $B=F M, N(M C B), E(M C B)$ $\mathrm{C}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCS})$ $D=F M, N(M C S), E(M C B)$
Poles	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$
Amperes	$0040=40 \mathrm{~A}$ $0400=400 \mathrm{~A}$ $0080=80 \mathrm{~A}$ $0600=600 \mathrm{~A}$ $0100=100 \mathrm{~A}$ $0800=800 \mathrm{~A}$ $0150=150 \mathrm{~A}$ $1000=1000 \mathrm{~A}$ $0200=200 \mathrm{~A}$ $1200=1200 \mathrm{~A}$ $0225=225 \mathrm{~A}$ $1600=1600 \mathrm{~A}$ $0260=260 \mathrm{~A}$	$0030=30 \mathrm{~A}$ $0300=300 \mathrm{~A}$ $0070=70 \mathrm{~A}$ $0400=400 \mathrm{~A}$ $0100=100 \mathrm{~A}$ $0600=600 \mathrm{~A}$ $0150=150 \mathrm{~A}$ $0800=800 \mathrm{~A}$ $0225=225 \mathrm{~A}$ $1000=1000 \mathrm{~A}$	$0030=30 \mathrm{~A}$ $0300=300 \mathrm{~A}$ $0070=70 \mathrm{~A}$ $0400=400 \mathrm{~A}$ $0100=100 \mathrm{~A}$ $0600=600 \mathrm{~A}$ $0150=150 \mathrm{~A}$ $0800=800 \mathrm{~A}$ $0225=225 \mathrm{~A}$ $1000=1000 \mathrm{~A}$	$0030=30 \mathrm{~A}$ $0300=300 \mathrm{~A}$ $0070=70 \mathrm{~A}$ $0400=400 \mathrm{~A}$ $0100=100 \mathrm{~A}$ $0600=600 \mathrm{~A}$ $0150=150 \mathrm{~A}$ $0800=800 \mathrm{~A}$ $0200=200 \mathrm{~A}$ $1000=1000 \mathrm{~A}$ $0225=225 \mathrm{~A}$
Voltage	$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{G}=220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \mathrm{H}=380 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~K}=600 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 0=415 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{G}=220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \mathrm{H}=380 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~K}=600 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 0=415 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{G}=220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \mathrm{H}=380 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~K}=600 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 0=415 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$
Enclosure	$\begin{aligned} & S=\text { NEMA } 1 \\ & R=\text { NEMA } 3 R \end{aligned}$	$\begin{aligned} & K=0 \text { pen } \\ & S=\text { NEMA } 1 \\ & J=\text { NEMA } 12 \\ & R=\text { NEMA } 3 R \\ & D=\text { NEMA } 4 X \end{aligned}$	$\begin{aligned} & \mathrm{K}=\text { Open } \\ & \mathrm{S}=\text { NEMA } 1 \\ & \mathrm{R}=\text { NEMA } 3 R \\ & \mathrm{~J}=\text { NEMA } 12 \\ & \mathrm{D}=\text { NEMA } 4 X \end{aligned}$	$\begin{aligned} & K=0 \text { pen } \\ & S=\text { NEMA } 1 \\ & J=\text { NEMA } 12 \\ & R=\text { NEMA } 3 R \\ & D=\text { NEMA } 4 X \end{aligned}$
Listing	U = UL 1008 listed	U = UL 1008 listed	$U=$ UL 1008 listed	$U=$ UL 1008 listed

Key: DO = Drawout
FM = Fixed mounted
MCB = Molded case breaker
MCS = Molded case switch

Transfer Switch Equipment—Product Overview

Product Selection Guide

Transfer Switch Products, continued

Note

(1) Supplied as drawout design only.

Key: DO = Drawout
FM = Fixed mounted
MCB = Molded case breaker
MCS = Molded case switch
PS = Power switch
PCB = Power circuit breaker

Product Description

Eaton's automatic transfer switches are reliable, rugged, versatile and compact assemblies for transferring essential loads and electrical distribution systems from one power source to another.
Transfer switches can be supplied in separate enclosures for stand-alone applications or can be supplied as an integral component in the following equipment (see table below).

Product Type

Description	Section Reference
UL 1558 Switchgear	Vol. 3, Tab 4
UL 891 Switchboards	Vol. 2, Tab 4
Motor Control Centers	Vol. 3, Tab 3

Typical Applications

All Eaton transfer switches are designed to meet the requirements set forth by UL 1008; however, all transfer switches are not created equal. You can be assured of safe and reliable operation from all types of transfer switches that Eaton offers.

Basic Components

The three basic components of a transfer switch are:

- Power switching device to shift the load circuits to and from the power source
- Transfer logic controller to monitor the condition of the power sources and provide the control signals to the power switching device
- Control power source to supply operational power to the controller and switching device

Application Description

A transfer switch is a critical component of any emergency or standby power system. When the normal (preferred) source of power is lost, a transfer switch quickly and safely shifts the load circuit from the normal source of power to the emergency (alternate) source of power. This permits critical loads to continue running with minimal or no outage. After the normal source of power has been restored, the retransfer process returns the load circuit to the normal power source.
Transfer switches are available with different operational modes including:

- Manual
- Non-automatic
- Automatic
- Bypass isolation
- Maintenance bypass

Switch Types

Manual transfer-This type of transfer is a non-automatic transfer switch manually initiated and manually operated. There is no motor operator or solenoid to initiate the transfer. The operator needs to open the enclosure door and operate the manual handle. Manual transfer is available only on a breakerbased design. Service entrance ratings are not available on manual transfer breaker-based designs.

Non-automatic transfer-

This type of transfer is manually initiated, but electrically operated via the solenoid in a contactor-based design and the motor operator in a breaker-based design.

Automatic transfer-This type of transfer takes place automatically per the programmable settings in the ATS controller. The ATS controller senses source availability and when the programmed conditions are met, initiates a command to start the transfer including the generator start command (when transferring from a utility to a generator source). An automatic transfer switch can be configured to perform a utility-to-utility transfer or a generator-to-generator transfer (provided the ATS controller has this capability).

Bypass isolation transfer

switch-This type of transfer switch includes an automatic transfer switch and also includes the bypass switch that allows the capability to transfer the load to the bypass switch without interrupting the power.

Maintenance bypass

transfer switch-A
maintenance bypass transfer switch is a non-automatic (manually initiated and electrically operated) initiated transfer switch used for specific applications for a UPS.

The power switching operation of transfer switches may be separated into the following transition modes:

Transition Types

Open transition-This is
a "break-before-make" transfer. There is a definite break in power as the load is disconnected from one source and connected to the other source.

Open in-phase transition-

This is a "break-beforemake" transfer. There is a definite break in power as the load is disconnected from one source and connected to the other source. The ATS controller allows the transfer only when the phase difference between the two sources is near zero.

Open in-phase with default to time delay neutral-

break-before-make operation using an in-phase monitor for source synchronization. If the in-phase does not initiate a transfer within a programmable time delay, then the transfer will default to a time delay neutral type of transfer.
Delayed transition-This is a "break-before-make" or open transition that also has a "center off" or neutral position with a programmable time delay setting for the neutral position. The transfer switch is either closed on Source 1, closed on Source 2, or in a center off, neutral position (not closed on either source).

Delayed transition with

 load voltage decay-This is a delayed transition with the optional feature to delay in the neutral position to point where the load voltage decays to a programmable voltage level. When the load voltage level reaches the programmable set point, the transfer from the neutral position initiates.Closed transition-This is a "make-before-break" transfer. Both sources are connected to the load for less than 100 ms before the break occurs. The two power sources have to be electrically synchronized in voltage, frequency and phase in order for a closed transition to be initiated by the automatic controller. Programmable setpoints allow the user to adjust frequency and voltage tolerances.

Transfer Switch Equipment—Product Overview

Switching Mechanisms

The power switching mechanism in a transfer switch may be designed as either a two-position or a three-position device. A twoposition device permits the load to be closed on Source 1 or Source 2.

There is no center off or neutral position. A threeposition device permits the load to be closed on Source 1, closed on Source 2, or unconnected in the center off or neutral position.

Transition Types

Transition Types	Contactor-Based			
	Two Position	Three Position	Molded Case-Based	Power Frame-Based
Open	Yes	Yes	Yes	Yes
Open in-phase	Yes	Yes	No	Yes
Open in-phase default TDN	No	Yes	No	Yes
Delayed time delay neutral	No	Yes	Yes	Yes
Delayed load voltage decay	No	Yes	Yes	Yes
Closed	Yes	Yes	No	Yes

Note: Contactor-based (two-position) is designated as C2 in catalog number. Contactor-based (three-position) is designated as $\mathbf{C 3}$ or $\mathbf{C 5}$ in catalog number.

Fully Rated Fourth Pole (Switched Neutral)

Eaton provides a fully rated switched neutral or fourth pole, meaning that the fourth pole has withstand, interrupt and closing ratings identical to the power contacts. The neutral pole is operated on a common shaft with the power contacts, thereby ensuring simultaneous opening and closing of the switched neutral. Eaton's fully rated fourth pole eliminates typical problems with a three-pole overlapping neutral:

- Eliminates nuisance ground trips at the main due to circulating zero sequence harmonic current between sources
- Reduction in ground current due to isolated single ground point lowers arc-flash levels and reduces generator damage
- Eliminates potential for faults to propagate across overlapping neutral; fully rated fourth pole will handle as a normal operation
- Does not generate voltages that exceed normal phase voltage

Note: For more detail, reference Eaton White Paper IA08700002E.

UL 1008 Endurance Testing

When specifying a UL 1008 transfer switch, you can be assured the switch has met and passed rigorous endurance testing.

UL 1008 Endurance Testing

ATS Rating (Amperes)	Rate of Operation Per Minute	Number of Cycles of Operations		
		With Current	Without Current	Total
0-300	1	6000	-	6000
301-400	1	4000	-	4000
401-800	1	2000	1000	3000
801-1600	0.5	1500	1500	3000
1601-4000	0.25	1000	2000	3000

Life Expectancy

Transfer switch applications typically require weekly or monthly testing. The table below estimates the life expectancy of a UL 1008 Listed transfer switch if exercised once per week based on UL 1008 endurance testing requirements.

Life Expectancy

ATS Rating (Amperes)	Minimum Operations Per Year	Life Expectancy in Years With Current Applied	Total Life Expectancy in Years (with and without current)
$0-300$	52	115	115
$301-400$	52	76	76
$401-800$	52	38	57
$801-1600$	52	28	57
$1601-4000$	52	19	57

Utility-Generator

Transfer switches are traditionally applied between a utility and a generator set for emergency and standby power systems.

Generator-Generator

Transfer switches are sometimes applied between two generator sets for prime power use, often in remote installations. In such applications, source power is periodically alternated between the generator sets to equally share run time.

Service Entrance Rated Transfer Switches

A service entrance rated transfer switch with integral overcurrent protection eliminates the need for separate upstream disconnect devices and their respective power interconnections. This means the automatic transfer switch (ATS) is installed directly at the point of service entrance, saving valuable space and cost.

Eaton service entrance rated transfer switches have a 100% rating. The ATS as well as the supplied breaker may be applied at 100% of the ATS rating, thus eliminating the need to consider any de-rating factors based upon the breaker rating.

Eaton service entrance rated transfer switches are fully UL 1008 Listed, meaning that the entire transfer switch assembly, including the circuit breaker, has passed all UL 1008 requirements to include a dielectric test, endurance test, overload test, withstand rating test and temperature rise test.

Built-In Protection

All Eaton molded case switches are "self protected," such that under extreme fault conditions, the switch will open before destroying itself. This feature allows Eaton to offer "Maintenance-Free Contacts" on the molded case transfer switch. The molded case switches have instantaneous magnetic trip units installed in each switch. These trips are not accessible once installed by the factory to eliminate field tapering. The trips are set to a minimum of 12 to 15 times the rated current of the molded case device, well above any coordination set points. This means they will not interfere with the normal operation of the distribution system and will only trip if something is very wrong.

Service Entrance Rated Transfer Switches

Built-In Protection

Example: 400 Ampere ATS With 500 Ampere T/M Breaker 400 FLA $\times 1.25=500$ Ampere Breaker
Compare 400 Ampere ATS and 500 Ampere LD Breaker

Note
(1) Magnetic Trip $12 \times$ frame rating

Contactor-Based Transfer Switch

Open Transition, 40-1600 A

Product Description

Eaton automatic transfer switches (ATS) provide unmatched performance, reliability and versatility for critical standby power applications. Automatic transfer switches can be equipped with the ATC-100, ATC-300+ and ATC-900 controllers to match any application need. Each controller offers rock-solid monitoring, status reporting and transfer control operation. Superior design and robust construction make Eaton's automatic transfer switch the industry benchmark for critical and distributed power systems.

Product Configuration

- 40, 80, 100, 150, 200, 225, 260, 400, 600, 800, 1000, 1200 and 1600 A ratings
- Two-, three- or four-pole
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA ${ }^{\circledR 1} 1,12,3 R$, 4 X , open

Design Highlights

- Double-throw, solenoid operated transfer mechanism
- Mechanically interlocked to prevent connection of both sources
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Methods of transfer include: open in-phase transition, time delay in neutral transition, or in-phase with a default to time delay in neutral transfer
- Silver composition main contacts
- Switch position indication contacts
- Source 1 position: 1 Form C
- Source 2 position: 1 Form C

Contents
Description
Page
Contactor-Based Transfer Switch
Open Transition, 40-1600 A
Features and Benefits V2-T5-9
Standards and Certifications V2-T5-10
Catalog Number Selection V2-T5-10
Technical Data and Specifications V2-T5-11
Dimensions . V2-T5-12
Service Entrance Rated-Contactor-Based Transfer Switch
Open Transition, Service Entrance Rated, 40-1600 A

V2-T5-14
Contactor-Based Automatic Transfer Switch
Closed Transition, 40-1200 A
V2-T5-21
Contactor-Based Transfer Switch
Open and Closed Transition, 1600-3000 A.
V2-T5-25

Optional Accessories

- Eaton IQ and Power Xpert ${ }^{\circledR}$ series metering
- Automatic controller protective cover with padlock provision
- Surge protection device (UL 1449 3rd edition)
- Remote annunciator controller-monitor and control single or multiple automatic transfer switches
- Ethernet gateway with Web server (Modbus TCP/IP, SNMP, BACNet ${ }^{\circledR}$)
- Space heater with thermostat

Features and Benefits

Standard and Optional Controller Features

	Automatic Controllers		
	ATC-100	ATC-300+	ATC-900
Description			
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard	Standard	Standard
Source mimic diagram with LED indication	Standard	Standard	Standard
Engine test and start contact	Standard	Standard	Standard
Dual source control power input	Standard	Standard	Standard
Liquid crystal display (LCD)	-	Standard	Standard
Programmable set points and plant exerciser	-	Standard	Standard
Password protection	-	Standard	Standard
Time stamped history and event log	-	Standard	Standard
Time delay bypass	-	Standard	Standard
Go to source 2 control input	-	Standard	Standard
Pre-transfer and general alarm control outputs	-	Standard	Standard
Lockout and monitor modes	-	Standard	Standard
Source status output relay contacts	-	Standard	Standard
Modbus RTU communication	-	Standard	Standard
Manual retransfer control input	-	Optional	Standard
Source 2 input / load shed input	-	Optional	Standard
USB port-profile and data management	-	-	Standard
Preferred source selection	-	-	Standard
Dual generator capability	-	-	Standard
User configurable inputs/outputs	-	-	Standard
Advanced diagnostics and troubleshooting	-	-	Standard
with pre-/post-event data capture	-	-	Optional
Integrated load metering	-	Optional	
Load management with selective load shed	-	Optional	
DC voltage control power input	-	Optional	
Three source ATS master/slave control	-	Optional	
Modbus TCP/IP communication ${ }^{1}$	-		
Note	-		
M Modbus TCP/IP option requires use of Modbus RTU port.			

1600 ATS with ATC-300+ Controller

1200 A ATS with ATC-300+ Controller

Standards and Certifications

- UL® 1008 Listed
- CSA® C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

(1) (1)
 OSHPD

Catalog Number Selection

Contactor-Based Transfer Switch (Open Transition)

Note: The catalog numbering system offers a wide variety of standard configurations to meet your application needs. Please be advised that some catalog number combinations may not be available. Please contact your local Eaton sales representative with any configuration related questions.

Technical Data and Specifications

UL 1008 Transfer Switch (Contactor-Based) Short-Circuit Withstand and Closing Current Ratings

		Short-Circ	stand Closing Cu	ent Ratin							
		When Pro Circuit Br Time Dura	by a 05 sec.(1) (2) Max.)	When Pro Specific C Mfg. and T	ted by a uit Breaker e Based	When Pro Mfg. and	ted by a Spec Based	ific Fuse			
Switch Rating (A)	Mechanism (Device Type)	480 Vac Max. (kA)	600 Vac Max. (kA)	$\begin{aligned} & 480 \mathrm{Vac} \\ & \text { Max. (kA) } \end{aligned}$	600 Vac Max. (kA)	$\begin{aligned} & 480 \text { Vac } \\ & \text { Max. (kA) } \end{aligned}$	Fuse Class	Max. Fuse Size (A)	600 Vac Max. (kA)	Fuse Class	Max. Fuse Size (A)
40, 80, 100	C2	10	10	30	22	100	K5, RK5	200	100	K5, RK5	200
							K1, RK1	400		K1, RK1	400
							J, T	450		J, T	450
150,200	C2	10	22	30	35	100	K5, RK5	400	200	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600
							J, K1, RK1	600		L	800
							T	800		T	1200
225, 260,400	C2	30	-	50	-	200	$\begin{aligned} & \hline \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600	200	J, T, L, RK5	600
							L	800		L	1600
							T	1200			
$\begin{aligned} & 40(3), 803^{3}, \\ & 1000^{3}, 150^{3}, \end{aligned}$	C3 (3) C5	$30{ }^{3}$	$22{ }^{3}$	50 (3)	$35{ }^{3}$	$200{ }^{3}$	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600	$200{ }^{3}$	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600
								800		L	800
							T	1200		T	1200
225, 260,400	C3, C5	30	50	50	65	200	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600	200	J, T, L, RK5	600
							L	800		L	1600
							T	1200			
$600,800,1000,$	C3, C5	50	50	65	65	200	J, T, L, RK5	600	200	J, T, L, RK5	600
							L	1600		L	1600
1600	C3, C5	50	-	65	-	200	J, T, L, RK5	600	-	-	-
							L	2000		-	-

Notes

(1) For open transition transfer switches rated $40-200 \mathrm{~A}(\mathrm{C} 2$ switching mechanism) time duration is 0.025 sec maximum.
(2) For closed transition transfer switches rated $40-200 \mathrm{~A}$ (C3 switching mechanism) time duration is 0.025 sec maximum.
(3) For closed transition transfer switches rated $40-100 \mathrm{~A}$ (C3 switching mechanism) or 150-200 A (C3 switching mechanism), the short-circuit withstand closing current ratings associated with a C2 switching mechanism apply.

Contactor-Based Transfer Switches

Dimensions

Approximate Dimensions in Inches (mm)
Contactor-Based Transfer Switch 40-1200 A -Dimensions and Approximate Shipping Weight

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Load Side, Normal and Standby Source	Neutral Connection	Weight in Lb (kg)
40-100 at 480 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#14-2/0	(3) \#14-1/0	156 (71)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#14-2/0	(3) \#14-1/0	156 (71)
$40-100$ at 600 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#14-2/0	(3) \#14-1/0	164 (74)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#14-2/0	(3) \#14-1/0	164 (74)
150-200 at 480 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	164 (74)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	164 (74)
150-200 at 600 V (1)	N1, N12, N3R	52.00 (1321.0)	19.81 (503.2)	16.75 (425.5)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	260 (118)
	N4X	52.00 (1321.0)	21.00 (533.4)	16.75 (425.5)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	260 (118)
$225-400$ at 480 V (1)	N1, N12, N3R	52.00 (1321.0)	19.81 (503.2)	16.75 (425.5)	(2) $3 / 0-250 \mathrm{kcmil}$ (1) $3 / 0-600 \mathrm{kcmil}$	(6) $250-500 \mathrm{kcmil}$	260 (118)
	N4X	52.00 (1321.0)	21.00 (533.4)	16.75 (425.5)	(2) $3 / 0-250 \mathrm{kcmil}$ (1) $3 / 0-600 \mathrm{kcmil}$	(6) 250-500 kcmil	260 (118)
225-1200 at 600 V (2)	N1, N3R	79.41 (2017.0)	29.19 (741.4)	22.46 (570.5)	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 1/0-750 kcmil	600 (272) three-pole 650 (295) four-pole
	N12, N4X	84.75 (2152.7)	29.00 (737.0) three-pole 29.00 (737.0) four-pole	24.26 (616.2)	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	$\begin{aligned} & 700(318) \\ & 750 \text { (340) } \end{aligned}$
600-1200 at 480 V (2)	N1, N3R	79.41 (2017.0)	25.25 (641.4) three-pole 29.19 (741.4) four-pole	22.46 (570.5)	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 1/0-750 kcmil	600 (272) three-pole 650 (295) four-pole
	N12, N4X	84.75 (2152.7)	29.00 (737.0) three-pole 29.00 (737.0) four-pole	24.26 (616.2)	(4) $1 / 0-750 \mathrm{kcmil}$	(12) $1 / 0-750 \mathrm{kcmil}$	$\begin{aligned} & 700(318) \\ & 750 \text { (340) } \end{aligned}$

Automatic, Non-Automatic Up to 400 AWallmount, N1 or N3R

Front View

Notes

(1) Wallmount.
(2) Floorstanding and wall-secured-height dimension includes the bottom bracket.

Automatic, Non-Automatic 600-1200 A Outline, N1 or N3R

Contactor-Based Transfer Switches

Approximate Dimensions in Inches (mm)

1600 A Transfer Switch

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Load Side, Normal and Standby Source	Neutral Connection	Weight in Lb (kg)
1600 A at	N1	$90.00(2286.0)$	$40.00(1016.0)$	$28.73(729.7)$	$(4) 1 / 0-750 \mathrm{kcmil}$	$(12) 1 / 0-750 \mathrm{kcmil}$	$730(331)$ three-pole
480 V (1)	N3R	$90.72(2304.3)$	$40.35(1024.9)$	$43.34(1100.8)$	$(4) 1 / 0-750 \mathrm{kcmil}$	$(12) 1 / 0-750 \mathrm{kcmil}$	$780(354)$ three-pole $830(377)$ four-pole

Automatic, Non-Automatic Open Transition NEMA 1 Enclosure 1600 A

Automatic, Non-Automatic Open Transition NEMA 3R Enclosure 1600 A

Note
(1) Freestanding.

Contactor-Based Transfer Switches

Service Entrance Rated-Contactor-Based Transfer Switch

Open Transition, Service Entrance Rated, 40-1600 A

Product Description

The service entrance rated automatic open transition contactor-based transfer switch is equipped with an integrated circuit breaker to be applied and installed directly at the point of service entrance.

The entire transfer switch assembly has been tested and listed to UL 1008 for use as service equipment with a 100% load rating. This differs from other transfer switch products in the marketplace that may only carry a UL 891 listing or an 80\% load rating.

The integrated circuit breaker is equipped with a Digitrip 310+ trip unit that can be configured with an Arcflash Reduction Maintenance System to easily meet National Electrical Code 240.87 for arc energy reduction.

Product Configuration

- 40, 80, 100, 150, 200, 225, 260, 400, 600, 800, 1000, 1200 and 1600 A
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $480 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R

Design Highlights

- Service entrance rating listed to UL 1008 with 100\% load rating
- Separate ATS and breaker compartment permits safe access to the ATS
- Combined circuit breaker/ transfer switch assembly reduces overall equipment size and installation cost
- Pad-lockable circuit breaker permits safe downstream maintenance
- Circuit breaker with electronic trip unit provides adjustable settings and curve shaping

Contents

DescriptionContactor-Based Transfer SwitchOpen Transition, 40-1600 AV2-T5-8
Service Entrance Rated-Contactor-Based Transfer SwitchOpen Transition, Service Entrance Rated, 40-1600 A
V2-T5-15
Standards and Certifications V2-T5-18
Catalog Number Selection V2-T5-18
Technical Data and Specifications V2-T5-19
Dimensions V2-T5-19
Contactor-Based Automatic Transfer Switch
Closed Transition, 40-1200 A V2-T5-21
Contactor-Based Transfer SwitchOpen and Closed Transition, 1600-3000 AV2-T5-25

Features and Benefits

Standard Features-
 with ATC-300+ Controller

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance
- Pretransfer signal contacts 1NO/1NC (with threeposition mechanism)
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostics and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/load with fail-safe
- Modbus ${ }^{\circledR}$ RTU via RS-485
- Source 1 Eaton Series G breaker with 310+ electronic trip unit with LSI
- Deadfront compartment for breaker
- Series G breaker with shunt trip
- Separate switch compartment

Optional Features

- Available surge suppression device for power/controller, engine start circuit, phone and cable connections
- Space heater with thermostat
- Eaton IQ and Power Xpert series metering
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-300+ and ATC-900 controllers available
- Source 2 inhibit
- Manual retransfer to normal
- Remote annunciator with control
- Ethernet communication (PXG 900 Gateway)
- Breaker with LSIG electronic trip units
- Breaker with Arcflash Reduction Maintenance System

Standard and Optional Controller Features

	Automatic Controllers	
Description	ATC-300+	ATC-900
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard	Standard
Source mimic diagram with LED indication	Standard	Standard
Engine test and start contact	Standard	Standard
Dual source control power input	Standard	Standard
Liquid crystal display (LCD)	Standard	Standard
Programmable set points and plant exerciser	Standard	Standard
Password protection	Standard	Standard
Time stamped history and event log	Standard	Standard
Time delay bypass	Standard	Standard
Go to source 2 control input	Standard	Standard
Pre-transfer and general alarm control outputs	Standard	Standard
Lockout and monitor modes	Standard	Standard
Source status output relay contacts	Standard	Standard
Modbus RTU communication	Standard	Standard
Manual retransfer control input	Optional	Standard
Source 2 input / load shed input	Optional	Standard
USB port-profile and data management	-	Standard
Preferred source selection	-	Standard
Dual generator capability	-	Standard
User configurable inputs/outputs	-	Standard
Advanced diagnostics and troubleshooting	-	Standard
with pre-/postevent data capture	-	Optional
Integrated load metering	Optional	Optional
Load management with selective load shed		
DC voltage control power input	Optional	
Three source ATS master/slave control	Optional	
Modbus TCP/IP communication (1		
		-

Note
(1) Modbus TCP/IP option requires use of Modbus RTU port.

Contactor-Based Transfer Switches

Design Features Integrated Service Entrance Rating

The service entrance rated contactor design has been tested and listed to UL 1008 as suitable for use as service equipment. In addition, per UL 1008, the switch is rated for 100% load ratings and eliminates application considerations when applying a 100% rated ATS with 100% load ratings.

> Separate Compartment for ATS and Breaker

The standard design includes a separate deadfront compartment for the incoming breaker and separate compartment for the ATS.
This innovative design provides simplified access to cable entrance areas and can reduce personal protection equipment (PPE) requirements when performing installation or routine maintenance.

Electronic Trip Unit on SE Breaker
The service entrance breaker is an Eaton Series G breaker with the 310+ trip unit that provides adjustable rating and breaker curve shaping. The trip unit comes with either LSI or LSIG curve shaping capability. The long delay and short delay functions enable the breaker curves to be manipulated for upstream and downstream breaker coordination.

Arcflash Reduction Maintenance System ${ }^{T M}$

The Eaton 310+ electronic trip units address the National Electrical Code ${ }^{\circledR}$ Section 240.87 for Arc Energy Reduction. These molded case circuit breakers provide two approved methods to reduce arc energy: energyreducing maintenance switching with local status indicator and zone selective interlocking.

ATC-300+ Controller
Eaton's ATC-300+ controller offers a full set of programmable time delays, source 2 inhibit and manual retransfer. The controller comes standard with Modbus communications.

ATC-900 Controller
Eaton's new ATC-900 controller brings ease of use, adaptability, supervisory and programming capabilities to mission-critical applications. The 4.3-inch color TFT display provides simple arrow keys for quick screen navigation. Event logging and recording of time-stamped events are viewed easily. Field configuration of I/O allows user adaptability to special requirements.

Multi-Tap Voltage Selector
Allows the transfer switch to be readily applied on most system voltages by connecting to the proper terminals. Available system voltages include 120, 208, $220,240,277$ or 480 Vac , 60 Hz . The non quick connect multi-tap transformer is standard on units up to 400 A and the quick re-connect version is standard on 600-1600 A.

Lockable Breaker

The upstream service rated breaker includes a doormounted keyed switch that will allow the breaker to be tripped to the OFF position and electrically locked out. The keyed switch has a Normal position and Disconnect position that indicates the breaker has been tripped. Once in the Disconnect position, the key may be removed. In addition there is a ship loose handle hasp that allows the breaker handle to be mechanically locked out.

40-200 A Service Entrance Contactor NEMA 1

225-400 A Service Entrance Contactor NEMA 1

Typical Service Entrance ATS Construction for 600-1000 A NEMA 1

600-1000 A Service Entrance Contactor NEMA 1 (ATS Door Open and Breaker Compartment Panel Removed)

5.2 Transfer Switches

Contactor-Based Transfer Switches

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified

Catalog Number Selection

Service Entrance Rated Contactor-Based Transfer Switch (Open Transition)

Dimensions

Approximate Dimensions in Inches (mm)
Service Entrance Rated Contactor-Based Transfer Switch 40-1600 A, 100\% Load Rating

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Normal	Emergency	Load	Neutral ${ }^{(3)}$	Weight in Lb (kg)
40-100 at 480 V	N1/N3R	52.00 (1320.8)	19.80 (502.9)	16.75 (425.5)	(1) \#8-350 kcmil	(1) \#14-2/0	(1) \#14-2/0	(3) \#14-1/0	240 (109)
$150-200$ at 480 V	N1/N3R	52.00 (1320.8)	19.80 (502.9)	16.75 (425.5)	(1) \#8-350 kcmil	(1) \#6-250 kcmil	(1) \#6-250 kcmil	(3) 1/0-250 kcmil	300 (136)
$225-400$ at 480 V	N1/N3R	79.00 (2006.6)	25.25 (641.4)	22.59 (573.8)	(2) \#2-500 kcmil	(2) $1 / 0-250 \mathrm{kcmil}$	(2) $1 / 0-250 \mathrm{kcmil}$	(6) $250 \mathrm{k}-500 \mathrm{kcmil}$	500 (227)
600-800 at 480 V	N1/N3R	79.00 (2006.6)	40.37 (1025.4)	22.59 (573.8)	(4) 4/0-500 kcmil	(4) $1 / 0-750 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 4/0-500 kcmil	900 (409)
1000 at 480 V	N1	79.00 (2006.6)	40.37 (1025.4)	22.59 (573.8)	(4) 4/0-500 kcmil	(4) $1 / 0-750 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(12) $4 / 0-500 \mathrm{kcmil}$	900 (409)
1000 at 480 V	N3R	90.00 (2286.0)	40.00 (1016.0)	62.50 (1587.5)	(4) $4 / 0-500 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 4/0-500 kcmil	1450 (658)
1200 at 480 V	N1	90.00 (2286.0)	40.00 (1016.0)	48.22 (1224.8)	(4) $500-1000 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(12) $4 / 0-500 \mathrm{kcmil}$	1400 (635)
	N3R			66.80 (1696.7)					1450 (658)
1600 at 480 V	N1	90.00 (2286.0)	40.00 (1016.0)	48.22 (1224.8)	(4) $500-1000 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$	(18) 1/0-750 kcmil	1600 (726)
	N3R			66.80 (1696.7)					1650 (748)

Automatic, 40-200 A, NEMA 1 and NEMA 3R, Wall Mount

Notes

(1) Rating applicable to normal side since transfer switch assembly includes integral circuit breaker on normal side. Reference Page V2-T5-11 for short-circuit ratings applicable to alternate/emergency side.
(2) When transfer switch is protected by a specific fuse, please reference Page V2-T5-11 for short-circuit ratings
(3) Neutral lug range is specific to 3 -phase, 3 -pole configuration without ground fault protection. Check with the Eaton sales representative for lug range associated with other configurations such as 4-pole (switched neutral) or ground fault protection.
(4) Two-pole is available up to 800 A

Automatic, 225-400 A, NEMA 1 and NEMA 3R Floor Standing Wall Attached

Approximate Dimensions in Inches (mm)

Automatic, 600-1000 A NEMA 1, 600-800 A NEMA 3R

Top View - Roof Removed

Front View—Doors Removed

Automatic, 1200 A and 1600 A, NEMA 1

Automatic 1000-1600 A, NEMA 3R

Contactor-Based Automatic Transfer Switch

Contents

ionV2-T5-8
Open Transition, Service Entrance Rated, 40-1600 A V2-T5-14Contactor-Based Automatic Transfer SwitchClosed Transition, 40-1200 A
Standards and Certifi.V2-T5-22
Catalog Number Selection
V2-T5-23
DimensionsV2-T5-25

Closed Transition, 40-1200 A

Product Description

Eaton's closed transition contactor-based automatic transfer switch is designed to avoid intentional interruption of power when both sources of power are available by momentarily paralleling both sources.

The controller is a comprehensive, multifunction, microprocessorbased controller, offering extensive monitoring, status reporting and transfer control operation.

The make-before-break contact sequence coupled with Eaton's ATC-900 provides a transfer switch that is useful in critical standby power applications available from 40-1200 A.

Product Configuration

- 40, 80, 100, 150, 200, 225, 260, 400, 600, 800,1000 and 1200 A ratings
- Two-, three- or four-pole
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R, 12

Design Highlights

- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages

Application Description

A transfer switch designed for closed transition has make-before-break contacts, which requires the normal and alternate sources to be synchronized. The source contacts on Eaton's CTC9 will parallel for 100 ms or less. In addition, a parallel limit timer (watchdog relay) comes standard to prevent paralleling sources for an extended period of time. The ATC-900 provides allphase undervoltage, underfrequency, overvoltage and overfrequency protection as a standard. Consult with the local utility company for permission and to verify the protection requirements, as each utility may have different rules regarding closed transition applications. Protective relays may be available as an option upon request.

Features and Benefits

Standard Features

- Auxiliary relay contacts:
- Source 1 available 1NO/ 1NC
- Source 2 available 1NO/ 1NC
- Switch position indication contacts:
- Source 1 position 1NO/ 1NC
- Source 2 position 1NO/ 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostics and help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System test pushbutton
- Programmable plant exerciser
- OFF, 7-day interval selectable run time 0-600 minutes no load/load with fail-safe

Optional Features

- UL 1449 3rd Edition compliant surge suppression devices
- Space heater with thermostat
- Power quality metering
- Stainless steel cover for controller
- Pre-transfer signal contacts 1NO/1NC
- Three-phase rotation protection (Source 1, Source 2 or both)
- Three-phase voltage unbalance protection (Source 1, Source 2 or both)

Contactor-Based Transfer Switches

Standard and Optional Controller Features

Description	Automatic Controller ATC-900
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard
Source mimic diagram with LED indication	Standard
Engine test and start contact	Standard
Dual source control power input	Standard
Liquid crystal display (LCD)	Standard
Programmable set points and plant exerciser	Standard
Password protection	Standard
Time stamped history and event log	Standard
Time delay bypass	Standard
Go to source 2 control input	Standard
Pre-transfer and general alarm control outputs	Standard
Lockout and monitor modes	Standard
Source status output relay contacts	Standard
Modbus RTU communication	Standard
Manual retransfer control input	Standard
Source 2 input / load shed input	Standard
USB port-profile and data management	Standard
Preferred source selection	Standard
Dual generator capability	Standard
User configurable inputs/outputs	Standard
Advanced diagnostics and troubleshooting	Standard
with pre-/post-event data capture	Optional
Integrated load metering	Optional
Load management with selective load shed	
DC voltage control power input	Three source ATS master/slave control Modbus TCP/IP communication (1)

Note

(1) Modbus TCP/IP option requires use of Modbus RTU port.

Closed Transition Controls
The CTC9 accomplishes the closed transition transfer by monitoring the voltage and frequency set point conditions of both power sources. Once the set point conditions are met, the ATC-900 controller will start the closed transition synchronization timer (TSCT). The TSCT is adjustable from 1 to 60 minutes in duration.

This duration is the time during which the ATC-900 controller will monitor the phase angles to anticipate when they will be within 8 electrical degrees. The closed transition scheme is anticipatory, allowing the close contacts signal to be initiated before the sources are exactly in phase.

If the TSCT times out and the transfer switch has not reached synchronization, the transfer switch will remain connected to the current power source and a failure-to-transfer alarm will be displayed. The transfer switch can also be equipped with an optional open transition transfer method for situations where synchronization is not possible but a transfer is required.
One of the following transition features can be selected:

- Closed transition only
- Closed transition with default to load voltage decay
- Closed transition with default to time delay neutral

Typical Contactor-Based ATS (Closed Transition) with ATC-900 Controller

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

OSHPD

Catalog Number Selection

Contactor-Based Automatic Transfer Switch (Closed Transition)

Technical Data and Specifications

UL 1008 Transfer Switch (Contactor-Based) Short-Circuit Withstand and Closing Current Ratings

Notes

(1) For open transition transfer switches rated 40-200 $\mathrm{A}(\mathrm{C} 2$ switching mechanism) time duration is 0.025 sec maximum.
(2) For closed transition transfer switches rated $40-200 \mathrm{~A}(\mathrm{C} 3$ switching mechanism) time duration is 0.025 sec maximum.
(3) For closed transition transfer switches rated 40-100 A (C3 switching mechanism) or 150-200 A (C3 switching mechanism), the short-circuit withstand closing current ratings associated with a C 2 switching mechanism apply.

Contactor-Based Transfer Switches

Dimensions

Approximate Dimensions in Inches (mm)
Contactor-Based Transfer Switch 40-1200 A Closed Transition

Automatic Up to 400 A Wallmount NEMA 1 and NEMA 3R

Automatic 600-1200 A-Wallmount NEMA 1 and NEMA 3R

Note
(1) For NEMA 3R, add 17.00 inches (431.8 mm) to depth.

Contactor-Based Transfer Switch

Open and Closed Transition, 1600-3000 A

Product Description

Whether your needs are standard commercial, harsh industrial or mission critical, Eaton's innovative contactorbased ATS design and robust construction set the standard for maintaining power to critical loads and optimizing system uptime.

Product Configuration

- 1600, 2000, 2600, 3000 A
- Two-, three- or four-pole
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R

Design Highlights

Adaptability and flexibility

- Highly configurable and integration friendly design with ratings from 2000 A to 3000 A allows you to easily select the right transfer switch for your application
- Available in open and closed transition types, as well as Automatic, NonAutomatic and Manual operation modes
- Scalable configurations including ATC-300+ and ATC-900 automatic transfer controllers allow matching intelligence and programming capabilities to your specifications

Improved performance and reliability

- UL 1008 listed short-circuit (100 kA; 0.05 second) and short-time ($85 \mathrm{kA} ; 0.5$ second) withstand closing ratings provide increased reliability and system uptime for multiple National Electrical Code (NEC) system types
- Stored energy technology permits manual operation under load for added redundancy
- Dual operator facilitates use of a single contactor type switching mechanism for closed transition configuration, minimizing footprint

Enhanced safety and serviceability

- Unique compartmentalized construction provides enhanced safety for operators and maintenance personnel
- Service personnel can electrically isolate control compartment while transfer switch is energized to facilitate routine maintenance and maximize uptime

Contents

Description PageContactor-Based Transfer Switch
Open Transition, 40-1600 A V2-T5-8
Service Entrance Rated-Contactor-Based Transfer Switch
Open Transition, Service Entrance Rated, 40-1600 A V2-T5-14
Contactor-Based Automatic Transfer Switch Closed Transition, 40-1200 A
Contactor-Based Transfer SwitchOpen and Closed Transition, 1600-3000 AV2-T5-26
Standards and Certifications V2-T5-27
Catalog Number Selection V2-T5-27
Technical Data and Specifications V2-T5-28
Dimensions V2-T5-28

- Kirk-key interlock allows for lock-out/tag-out of switching mechanism
- Three-pushbutton tethered control allows the operator to manually initiate a transfer between power sources at a distance
Simplified installation and integration
- Terminal connections can be made from the front or rear and at top or bottom of enclosure to simplify installation, with built-in source swap option for Normal and Emergency connections
- Standard 40-inch enclosure depth (NEMA 1) can be extended to 48,54 or 66 inches for integration into electrical distribution lineup. Up to (12) 1/0-750 kcmil Cu/Al mechanical lugs per phase available for normal, emergency and load connections
- All mounting locations for anchoring the enclosure are internal to help minimize footprint and maintain seismic ratings when integrated into a power distribution lineup

Contactor-Based Transfer Switches

Features and Benefits

Typical Open and Closed Transition, 1600-3000 A Contactor-Based Design Transfer Switch

Innovative Compartmentalized Design

Eaton's contactor-based ATS solutions are engineered for enhanced safety and uptime, with the front door of the ATS forming an isolated compartment that houses the automatic controller, control power transformer assembly, wire harnesses, relay logic, manual pushbutton controls, manual charging handle, terminal blocks and a variety of optional features to include a 2-position maintenance isolation switch (MIS).Upon opening the front door, service personnel can turn the MIS and electrically isolate the control compartment, while the transfer switch is energized. This innovative design enhances safety in the working environment when performing inspection or routine maintenance.

Tethered Remote Control

Multiple Operation Modes and

 Transition TypesOperation is possible in three different modes: Automatic, Non-Automatic and Manual. In Automatic mode, a transfer is electrically initiated and operated via the controller.
In Non-Automatic mode, a transfer is manually initiated and electrically operated using a door-mounted selector switch or via an optional tethered remote control, which connects via a standard Ethernet cable. In Manual mode, a transfer is manually initiated and operated using integrally mounted pushbuttons located within an isolated compartment directly behind the front door.Further, the ATS can be configured as open or closed transition type. The open transition type allows the user to select inphase or delayed transition via programmable set points. The closed transition type can be configured to default to open transition if source synchronization doesn't occur before a programmable delay timer expires.

Intelligent ATS Control

Eaton's new ATC-900 controller brings ease of use, adaptability, supervisory and programming capabilities to mission-critical applications. The 4.3-inch color TFT display provides simple arrow keys for quick screen navigation and easy viewing of event logs as well as recorded time-stamped events. Field configuration of programmable I/O allows user adaptability to special requirements.

Multi-Tap Voltage Selector

Allows the transfer switch to be easily field configured for operation at different system voltages via a single quickconnect plug. Available system voltage group offerings include 208/240/ $480 \mathrm{Vac}, 220 / 380 / 415 \mathrm{Vac}$ and 600 Vac .

Multi-Tap Control Power Transformer

Contactor Switching Mechanism

Robust double-throw switch construction includes dual operator and two-step stored energy technology. The operators can be charged electrically via motor or manually via handle. Once charged, stored energy allows for a complete transfer and re-transfer sequence to be performed. Manual controls and indication are integral to the design and many switching mechanism components are field replaceable.

Selective Coordination

Transfer switches can be configured with an optional UL 1008 listed short-time withstand closing rating of 85 kA (0.5 seconds) that is ideal for emergency, legally required, critical operations data systems, and critical operations power systems requiring selective coordination per the NEC.

ATC-300+ and ATC-900 Controllers Features

| | Automatic Controllers
 Description | ATC-300+ |
| :--- | :--- | :--- | ATC-900

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

OSHPD

Catalog Number Selection

Contactor-Based Automatic Transfer Switch (Closed Transition) (2)

[^1]Contactor-Based Transfer Switches

Technical Data and Specifications

Terminal Information for External Power Conductors

Ampere Rating	Normal (1)(2)	Emergency ${ }^{\text {(12) }}$)	Load (1)(2)	Neutral (3)
2000	$(8) 1 / 0-750$	$(8) 1 / 0-750$	(8) $1 / 0-750$	$(24) 1 / 0-750$
2600	$(12) 1 / 0-750$	$(12) 1 / 0-750$	$(12) 1 / 0-750$	$(36) 1 / 0-750$
3000	$(12) 1 / 0-750$	$(12) 1 / 0-750$	$(12) 1 / 0-750$	$(36) 1 / 0-750$

UL 1008 Listed Withstand Closing Ratings

Ampere Rating	Mechanism	Up to $\mathbf{6 0 0} \mathbf{V}$ Short-Circuit $\mathbf{(0 . 0 5 ~ \mathbf { ~ s e c })}$	Short-Time $\mathbf{(0 . 5 ~ s e c)}$	Specific Fuse
$2000-3000$	F5	100 kA	-	200 kA
$2000-3000$	65	100 kA	85 kA	200 kA

Dimensions

Approximate Dimensions in Inches (mm)
Contactor-Based Automatic Transfer Switch (Closed Transition)

NEMA 1

NEMA 3R
(Controller and Device Panels Mounted on Inner Door)

Ampere Rating	Enclosure Type	A (Height) ${ }^{\text {(5) }}$	B (Width) ${ }^{\text {(5) }}$	C (Depth) (4) ${ }^{\text {(5) }}$	Shipping Weight in $\mathbf{L b}(\mathbf{k g}){ }^{5}$
2000	NEMA 1	90.00 (2286.0)	40.00 (1016.0)	40.00 (1016.0)	1356 (615)
2600	NEMA 1	90.00 (2286.0)	40.00 (1016.0)	40.00 (1016.0)	1356 (615)
3000	NEMA 1	90.00 (2286.0)	40.00 (1016.0)	40.00 (1016.0)	1356 (615)
2000	NEMA 3R	90.69 (2303.5)	40.00 (1016.0)	58.59 (1488.2)	1356 (615)
2600	NEMA 3R	90.69 (2303.5)	40.00 (1016.0)	58.59 (1488.2)	1356 (615)
3000	NEMA 3R	90.69 (2303.5)	40.00 (1016.0)	58.59 (1488.2)	1356 (615)

Notes

(1) Standard mechanical lugs are UL listed, solderless screw-type Cu/Al. Number of conductors and size range shown is per pole.
(2) Two-hole compression lug or bus provisions available upon request. Please contact your local Eaton sales representative for more details,
(3) Only applies to wye system configuration with solid neutral. For four-pole, switched neutral configurations, the number and size of conductors supported will mimic Normal, Emergency and Load information shown.
(4) Standard depth extensions are available for integration into electrical distribution equipment line-up. Please contact your local Eaton sales representative for more details.
(5) Dimension in inches (mm) and weight in $\mathrm{Ib}(\mathrm{kg})$. Data is approximate and subject to change. Please reference product outline drawing(s) for latest information.

Bypass Isolation Contactor-Based Transfer Switch

Open and Closed Transition, Dual Drawout, 40-1600 A

Product Description

Eaton's bypass isolation transfer switch is used in life safety and other missioncritical applications where redundancy is desired and maintenance of the automatic transfer switch can be performed without interrupting power to the load. Transfer switches can be equipped with the ATC$300+$ or ATC-900 controller.

Product Configuration

- 100, 150, 200, 225, 260, 400, 600, 800, 1000, 1200 and 1600 A
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R, 12, 4X

Design Highlights

- Front access is a standard feature on all ratings
- Entry:
- Top, bottom or both
- Isolated compartments
- Improved safety:
- Isolated compartments with barriers
- Single motion rack-out with doors closed
- Ability to test power switching elements during drawout process
- Dual ATS capability-both the ATS switch and bypass switch operate in automatic mode
- Installation flexibility:
- Field entry/exit locations can be modified in the field
- Interchangeable drawout contactors
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Dual drawout-ATS and bypass

Contents

Description

Page

Bypass Isolation Contactor-Based Transfer Switches
Open and Closed Transition,
Dual Drawout, 40-1600 A
Features, Benefits and Functions V2-T5-30
Standards and Certifications V2-T5-32
Catalog Number Selection V2-T5-32
Technical Data and Specifications V2-T5-32
Diagrams
V2-T5-33
Dimensions
V2-T5-34
Open and Closed Transition, Drawout ATS,
Fixed Bypass, 40-1200 A
V2-T5-35

Bypass Isolation Contactor-Based Transfer Switches

Features, Benefits and Functions

Standard Features

- Drawout cassette design on both ATS and bypass
- No service interruption in bypass to the same source
- Source available contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection (ATC-300+ only)
- Three-phase voltage unbalance/loss (ATC-300+ only)
- Pretransfer signal contacts 1 NO and 1NC (open transition only)
- Go to Source 2 (EMERGENCY)
- Field-programmable time delays:
- Time delay engine start: 0-1200 seconds
- Time delay normal to emergency: 0-1800 seconds
- Time delay emergency to normal: 0-1800 seconds
- Time delay engine cooldown: 0-1800 seconds
- Time delay emergency failure: 0-6 seconds
- LCD-based display for programming, system diagnostics and Help menu display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe

Optional Features

- Surge protection (UL 1449 3rd Edition)
- Eaton IQ and Power Xpert multi-function power quality metering
- Automatic transfer mode with selectable nonautomatic/automatic retransfer mode
- Modbus RTU via RS-485
- Remote annunciation with control
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-900 controller
- Includes Modbus RTU via RS-485
- Includes four programmable inputs/ outputs
- Includes two plant exercisers
- Includes LCD color display with easy navigation tools to settings and event logs
- Expandable I/O (up to 20 I/O total)
- Optional integrated load metering
- Optional EtherNet TCP/ IP communications

Bypass Isolation Switch Design

Front Access

Front access is a standard feature. Source 1 (NORMAL) Source and Load connections are set up as standard top entry and Source 2 (EMERGENCY) Source connections as bottom entry.
These connections are located in their own separate compartments. These connections can be relocated in the field if necessary.

Multi-Tap Transformer

The industry-exclusive multitap system voltage selector allows the transfer switch to be applied on most system voltages by proper insertion of the selector plug.

Dual Drawout

Both the ATS and bypass contactor assemblies are identical, interchangeable and can be drawn out. This feature allows the user the ability to withdraw, maintain or swap contactor assemblies, providing redundancy of ATS and bypass functions from one contactor assembly to the other.

Improved Safety

The unique Eaton design includes separation between control and power components. The ATS and bypass isolation contactors are mounted in separate compartments with protective barriers between them. This design prevents the possibility of contact with the rear-mounted power connections to the contactors. In addition, the top and bottom entry have separate compartment doors.

Ease of Maintenance

Transfer to the bypass power contactor is easily initiated and controlled via doormounted controls. Once the transfer to the bypass contactor is complete, the ATS contactor is easily racked out with the compartment door closed. The ATS contactor may then be tested in the racked out position.

Ease of Transfer

The Eaton design allows the operator to make a quick and simple transfer from the ATS power contactor to the bypass contactor by initiating the electrically operated transfer via a two-position switch. Door-mounted indicating lights confirm that a successful transfer has taken place.

Dual ATS Capability

The controller automatically operates both the ATS and bypass switching
mechanisms. When in the bypass mode of operation, the controller continues to monitor the normal power source and will automatically initiate a transfer to the alternate source should the normal source fail. This feature effectively provides dual automatic transfer switches and redundancy for critical applications.

Bypass Isolation Switch Components

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

OSHPD

5 Catalog Number Selection

Bypass Isolation Contactor-Based Transfer Switch (Dual Drawout)

Technical Data and Specifications

UL 1008	480 V		600 V		Rating When Used with Upstream Fuse			
Ampere Rating	0.05 Seconds ${ }^{(2)}$	Specific Breaker	0.05 Seconds ${ }^{2}$	Specific Breaker	Rating (kA)	Maximum Transfer Switch Voltage	Fuse Type	Maximum Fuse Amperes
100	30	50	22	35	200	600	RK1, RK5, J, C, K1, K5	600
150	30	50	22	35	200	600	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600
200	30	50	22	35	200	600	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600
225	30	50	42	65	200	600	RK5	600
260	30	50	42	65	200	600	RK5	600
400	30	50	42	65	200	600	RK5	600
600	50	65	42	65	200	600	L	1200
800	50	65	42	65	200	600	L	1200
1000	50	65	42	65	200	600	L	1600
1200	50	65	42	65	200	600	L	1600
1600	50	65	-	-	200	480	L	2000

Notes

(1) 1600 A is dual drawout only and up to 480 V .
(2) 0.025 seconds up through 200 A .

Diagrams

Bypass Isolation

400 A Dual Drawout (ATS and Bypass)

Dimensions

Approximate Dimensions in Inches (mm)
$600-1600$ A (480 V) or 225-1200 A (600 V) Dual Drawout Bypass-NEMA 1
100-400 A (480 V) or 100-200 A (600 V) Dual Drawout Bypass-NEMA 1

Front View ${ }^{(1)}$

Side View

Side View

Contactor-Based Transfer Switch 100-1200 A - NEMA 1 Dimensions and Approximate Shipping Weight

	Enclosure Seismic ${ }^{(2)}$			Standard Terminals ${ }^{4}$			
Ampere Rating ${ }^{(3)}$	Height (A)	Width (B)	Depth (C)	Normal, Emergency and Load	Neutral	Metric Conversion $\left(\mathrm{mm}^{2}\right)^{(4)}$	Weight in Lb (kg)
100-200 A at 480 V (5)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/AI	(3) \#6-350 Cu/Al	$13-177 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	625 (283.8)
$100-200 \mathrm{~A}$ at 600 V (5)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/AI	(3) \#6-350 Cu/AI	$13-177 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	625 (283.8)
$225-400 \mathrm{~A}$ at 480 V (5)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) $3 / 0-600 \mathrm{Cu} / \mathrm{Al}$	(3) 3/0-600 Cu/AI	$85-304 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	625 (283.8)
$225-400 \mathrm{~A}$ at 600 V (6)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) 3/0-750 Cu/AI	$85-304 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
600 A at 480 V (90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) 3/0-750 Cu/AI	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
600 A at 600 V (6)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/AI	(6) 3/0-750 Cu/Al	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
$800-1200 \mathrm{~A}$ at 480 V (${ }^{\text {c }}$	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) 3/0-750 Cu/Al	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1850 (839.9)
$800-1200 \mathrm{~A}$ at 600 V (${ }^{\text {c }}$	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1850 (839.9)
1600 A at 480 V (6)	90.00 (2286.0)	40.00 (1016.0)	40.00 (1016.0)	(5) 1/0-750 Cu/Al	(16) $1 / 0-750 \mathrm{Cu} / \mathrm{Al}$	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	2200 (997.9)

Notes

(1) Source 1 Normal and Load connections are top and Source 2 is bottom. These connections can be relocated in the field.
(2) For seismic applications, it is necessary to use 5-13 UNC Grade or better hex head bolts and washers torqued to 50 ft -lbs.
(3) NEMA 12 and $4 X$ dimensions are 90.00 inches $H \times 46.00$ inches $W \times 38.00$ inches $D(2286.0 \mathrm{~mm} \mathrm{H} \times 1168.4 \mathrm{~mm} \mathrm{~W} \times 965.2 \mathrm{~mm}$ D). NEMA 4X enclosures are 304SS standard with an optional upgrade to 316SS.
(4) Same number of terminals per phase will be supplied.
(5) For NEMA 3R dimensions, add 18.29 inches (464.6 mm).
(6) For NEMA 3R dimensions, add 18.59 inches (472.2 mm).

Bypass Isolation Contactor-Based Transfer Switch-Fixed Bypass

Contents

Description

Bypass Isolation Contactor-Based Transfer Switches
Open and Closed Transition,
Dual Drawout, 40-1600 A
Open and Closed Transition, Drawout ATS, Fixed Bypass, 40-1200 A
Features, Benefits and Functions V2-T5-36
Standards and Certifications V2-T5-38
Catalog Number Selection V2-T5-38
Technical Data and Specifications V2-T5-38
Diagrams . V2-T5-39
Dimensions . V2-T5-40

V2-T5-29

Page

Open and Closed Transition, Drawout ATS, Fixed Bypass, 40-1200 A

Product Description

Eaton's bypass isolation transfer switch is used in life safety and other missioncritical applications where redundancy is desired and maintenance of the automatic transfer switch can be performed without interrupting power to the load. Transfer switches can be equipped with the ATC$300+$ or ATC-900 controller.

Product Configuration

- 100, 150, 200, 225, 260, 400, 600, 800, 1000 and 1200 A
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R, 12, 4X

Design Highlights

- Front access is a standard feature on all ratings
- Entry:
- Top, bottom or both
- Isolated compartments
- Improved safety:
- Isolated compartments with barriers
- Single motion rack-out with doors closed
- Ability to test power switching elements during drawout process
- Dual ATS capabilityboth the ATS switch and the bypass switch operate in automatic mode
- Installation flexibility:
- Field entry/exit locations can be modified in the field
- Interchangeable drawout contactors
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Fixed-mounted bypass, drawout ATS

Bypass Isolation Contactor-Based Transfer Switches

Features, Benefits and Functions

Standard Features

- Drawout cassette design on ATS with fixed-mounted bypass
- No service interruption in bypass to the same source
- Source available contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection (ATC-300+ only)
- Three-phase voltage unbalance/loss (ATC-300+ only)
- Pretransfer signal contacts 1NO and 1NC (open transition only)
- Go to Source 2 (EMERGENCY)
- Field-programmable time delays:
- Time delay engine start: $0-1200$ seconds
- Time delay normal to emergency: 0-1800 seconds
- Time delay emergency to normal: 0-1800 seconds
- Time delay engine cooldown: 0-1800 seconds
- Time delay emergency failure: 0-6 seconds
- LCD-based display for programming, system diagnostics and Help menu display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe (ATC-300+ only)

Optional Features

- Surge protection (UL 1449 3rd Edition)
- Eaton IQ and Power Xpert multi-function power quality metering
- Automatic transfer mode with selectable nonautomatic/automatic retransfer mode
- Modbus RTU via RS-485
- Remote annunciation with control
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-900 controller
- Includes Modbus RTU via RS-485
- Includes four programmable inputs/ outputs
- Includes two plant exercisers
- Includes LCD color display with easy navigation tools to settings and event logs
- Expandable I/O (up to 20 I/O total)
- Optional integrated load metering
- Optional EtherNet TCP/ IP communications

Bypass Isolation Switch Design

Front Access

Front access is a standard feature. Source 1 (NORMAL) Source and Load connections are set up as standard top entry and Source 2 (EMERGENCY) Source connections as bottom entry.
These connections are located in their own separate compartments. These connections can be relocated in the field if necessary.

Multi-Tap Transformer

The industry-exclusive multitap system voltage selector allows the transfer switch to be applied on most system voltages by proper insertion of the selector plug.

Dual Drawout

Both the ATS and bypass contactor assemblies are identical, interchangeable and can be drawn out. This feature allows the user the ability to withdraw, maintain or swap contactor assemblies, providing redundancy of ATS and bypass functions from one contactor assembly to the other.

Improved Safety

The unique Eaton design includes separation between control and power components. The ATS and bypass isolation contactors are mounted in separate compartments with protective barriers between them. This design prevents the possibility of contact with the rear-mounted power connections to the contactors. In addition, the top and bottom entry have separate compartment doors.

Ease of Maintenance

Transfer to the bypass power contactor is easily initiated and controlled via doormounted controls. Once the transfer to the bypass contactor is complete, the ATS contactor is easily racked out with the compartment door closed. The ATS contactor may then be tested in the racked out position.

Ease of Transfer

The Eaton design allows the operator to make a quick and simple transfer from the ATS power contactor to the bypass contactor by initiating the electrically operated transfer via a two-position switch. Door-mounted indicating lights confirm that a successful transfer has taken place.

Dual ATS Capability

The controller automatically operates the ATS and bypass switching mechanisms. When in the automatic bypass mode of operation, the controller continues to monitor the normal power source and will automatically initiate a transfer to the alternate source should the normal source fail. This feature effectively provides dual automatic transfer switches and redundancy for critical applications.

Bypass Isolation Fixed Bypass Components

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

OSHPD

5 Catalog Number Selection

Automatic Bypass Isolation Contactor-Based Transfer Switch (Drawout ATS, Fixed Bypass)

Technical Data and Specifications

UL 1008 Short-Circuit Withstand and Close-On Ratings (kA)

UL 1008 Ampere Rating	480 V 0.05 Seconds	480 V Specific Breaker	600 V 0.05 Seconds ${ }^{\text {(2) }}$		Rating When Used with Upstream Fuse			
					Rating (kA)	Maximum Transfer Switch Voltage	Fuse Type	Maximum Fuse Amperes
100	30	50	22	35	200	480	RK1, RK5, J, C, K1, K5	600
150	30	50	22	35	200	600	RK1, RK5, J, C, K1, K5	600
200	30	50	22	35	200	600	$\begin{aligned} & \text { RK1, RK5, J, } \\ & \text { C, K1, K5 } \end{aligned}$	600
225	30	50	42	65	200	600	RK5	600
260	30	50	42	65	200	600	RK5	600
400	30	50	42	65	200	600	RK5	600
600	50	65	42	65	200	600	L	1600
800	50	65	42	65	200	600	L	1600
1000	50	65	42	65	200	600	L	1600
1200	50	65	42	65	200	600	L	1600

Notes

(1) 1600 A is available on dual drawout only.
(2) 0.025 seconds up through 200 A .

Diagrams

Bypass Isolation

400 A Fixed Bypass

Dimensions

Approximate Dimensions in Inches (mm)

600-1200 A (480 V) or 225-1200 A (600 V)
Fixed Bypass - NEMA 1

Front View

Side View

100-400 A (480 V) or 100-225 A (600 V) Fixed Bypass-NEMA 1

Top and Bottom
Compartment Electrical
Panel Not Shown for Clarity

Front View

Contactor-Based Transfer Switch 100-1200 A - NEMA 1 Dimensions and Approximate Shipping Weight

Ampere Rating	Enclosure Seismic (1)			Standard Terminals			Weight in Lb (kg)
	Height (A)	Width (B)	Depth (C)	Normal and Emergency	Load	Neutral	
$100-200$ A at 480 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/AI	(1) \#6-350 Cu/Al	(3) \#6-350 Cu/AI	625 (283.8)
$100-200 \mathrm{~A}$ at 600 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/AI	(1) \#6-350 Cu/Al	(3) \#6-350 Cu/AI	625 (283.8)
$225-400 \mathrm{~A}$ at 480 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) 3/0-600 Cu/Al	(1) $3 / 0-600 \mathrm{Cu} / \mathrm{Al}$	(3) 3/0-600 Cu/AI	625 (283.8)
$225-400$ A at 600 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/Al	(2) 3/0-750 Cu/Al	(6) 3/0-750 Cu/AI	1550 (703.7)
600 A at 480 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/Al	(2) 3/0-750 Cu/Al	(6) 3/0-750 Cu/AI	1550 (703.7)
600 A at 600 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/Al	(2) 3/0-750 Cu/Al	(6) 3/0-750 Cu/AI	1550 (703.7)
$800-1200 \mathrm{~A}$ at 480 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) 3/0-750 Cu/Al	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) 3/0-750 Cu/Al	1750 (794.5)
$800-1200 \mathrm{~A}$ at 600 V (3)3	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) 3/0-750 Cu/Al	(4) 3/0-750 Cu/Al	(12) 3/0-750 Cu/Al	1750 (794.5)

Notes
(1) For seismic applications, it is necessary to use 5-13 UNC Grade or better hex head bolts and washers torqued to 50 ft -lbs.
(2) For NEMA 3R dimensions, add 18.29 inches (464.6 mm).
(3) For NEMA 3R dimensions, add 18.59 inches (472.2 mm).

Open Transition, Manual Operation, 30-1000 A

Product Description

Eaton's wallmount manually operated transfer switches are designed for a variety of standby power applications for critical loads. In the event of a primary power source interruption, the user can manually transfer the load circuits to the standby power source. Once primary power has been restored, the user can manually transfer the load circuits back to the primary power source.

Product Configuration

- 30, 70, 100, 150, 200, 225, 300, 400, 600, 800, 1000 A
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 12, 3R, 4X, open

Application Description

Manual transfer switches cover applications ranging from 30 to 1000 A through 600 Vac for standard manual configurations and open transition.

Manual transfer switches may be applied for those application where a manually initiated and manually operated transfer is suitable. The front door of the switch must be opened to operate the manual handle. The design comes standard with a deadfront design, allowing safe manual transfer under load. Should an application require a service entrance rating, then a non-automatic or automatic design needs to be selected.

Contents

Description Page
Molded Case-Based Transfer Switches
Open Transition, Manual Operation, 30-1000 A
Standards and Certifications
Standards and Certifications
Catalog Number Selection V2-T5-42
Technical Data and Specifications V2-T5-43
Dimensions V2-T5-44
Open Transition, Non-Automatic Operation, 30-1000 A V2-T5-45
Open Transition, AutomaticV2-T5-48

Features and Benefits

Features

- Molded case switch power contact assemblies
- Positive mechanical interlocking
- Permanently affixed manual operating handle

Benefits

- High withstand, totally enclosed for maximum arc suppression and isolation during power transfer
- Optional trip units offer system overcurrent protection
- Prevents the paralleling of two sources of power
- Permits safe and convenient manual transfer of power
- Requires no control power

Manual Handle
Manual Switch with Door OpenManually Initiated and Manually Operated

Note: If a service entrance rating is required, then a non-automatic type switch must be selected. Service entrance ratings are not available on a manual transfer switch.

Transfer Switches
Molded Case-Based Transfer Switches

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification
 OSHPD

Catalog Number Selection

Manual Molded Case-Based Transfer Switch

[^2]
Technical Data and Specifications

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections (1)

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) 4/0-600	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) $250-350$
600	HMDL	(2) \#1-500	(2) \#1-500	(12) $4 / 0-500$
600	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) $4 / 0-500$
800	HNB	(4) $4 / 0-500$	(4) 4/0-500	(12) $4 / 0-500$
1000	HNB	(4) $4 / 0-500$	(4) 4/0-500	(12) $4 / 0-500$

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

Transfer Switch Rating (A)	Short Circuit			Ratings When Used With Upstream Fuse (kA)		
	240 V	480 V	600 V	Maximum Fuse Rating	Fuse Type ${ }^{(2)}$	600 V
30	100	65	25	200	J,T	200
70	100	65	25	200	J,T	200
100	100	65	25	200	J, T	200
150	100	65	25	400	J,T	200
200	100	65	25	400	J,T	200
225	100	65	35	400	J,T	200
300	100	65	35	400	J,T	200
400	100	65	35	600	J,T	200
600	100/65 3 ${ }^{(1)}$	65/50 ${ }^{(4)}$	35/25 ${ }^{\text {5 }}$	800/1200	J,T	100/200
800	65	50	25	1200/1600	L	100/200
1000	65	50	25	1600	L	200

Notes

(1) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.
(2) Class R fuse with 100 kA rating.
(3) HMDL frame rated 100 kA . HNB frame rated 65 kA .
(4) HMDL frame rated 65 kA . HNB frame rated 50 kA .
(5) HMDL frame rated 35 kA . HNB frame rated 25 kA .

Transfer Switches
Molded Case-Based Transfer Switches

Dimensions

Approximate Dimensions in Inches (mm)
30-1000 A Type MTVX, MTHX-NEMA 1, 3R, 12 (1)

30-150 A Type MTHXFD Manual

Dimensions								
\mathbf{A}	B	C	D	E	F	G	H	Weight $\mathbf{L b}(\mathbf{k g})$
22.88	13.13	22.74	22.62	24.50	9.78	10.28	32.31	143
(581.2)	(333.5)	(577.6)	(574.5)	(622.3)	(248.4)	(261.1)	(820.7)	(65)

Power Panel and Transformer Panel

Power Panel Type	Height	Width	Depth
Power Panel			
HFD	$11.00(279.4)$	$17.00(431.8)$	$6.81(173.0)$
HKD	$24.50(622.3)$	$11.88(301.8)$	$17.50(444.5)$
HLD	$26.00(660.4)$	$16.88(428.8)$	$17.50(444.5)$
HMDL	$36.25(920.8)$	$16.88(428.8)$	$17.50(444.5)$
NB	$36.25(920.8)$	$16.88(428.8)$	$19.00(482.6)$
Transformer Panel			
HFD	$22.00(558.8)$	$16.50(419.1)$	$6.50(165.1)$
HKD, HLD, HMDL and NB	$28.63(727.2)$	$8.25(209.6)$	$5.50(139.7)$

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable for Cu or Al wire. Consult the factory for other available terminal sizes.
(3) Alternate line terminals.

Dimensions are approximate and should not be used for construction purposes.

Open Transition, Non-Automatic Operation, 30-1000 A

Product Description

Eaton's wallmount nonautomatic transfer switches are designed for a variety of standby power applications for critical loads.

In the event of a primary power source interruption, the user can manually transfer the load circuits to the standby power source through the use of an external pushbutton. Once primary power has been restored, the user can manually transfer the load circuits back to the primary power source through the use of an external pushbutton.

Product Configuration

- 30, 70, 100, 150, 200, 225, $300,400,600,800,1000$ A
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 12, 3R, 4X, open
- Service entrance rated

Application Description

Non-automatic transfer switches cover applications ranging from 30-1000 A through 600 Vac for manual configurations, open transition, standard or service entrance.

Non-automatic transfer switches are manually initiated, but electrically operated designs. Front door-mounted controls allow the operator to initiate the transfer. Overcurrent trips may be added to the design for either or both the normal and emergency source. Service entrance ratings are available. Note that the Eaton service entrance rated non-automatic transfer switch is a 100% rated and listed to UL 1008 as suitable for use for service entrance.

Features and Benefits Features

- Molded case switch power contact assemblies
- Positive mechanical and electrical interlocking
- Permanently affixed manual operating handle
- Pushbutton operation

Benefits

- High withstand, totally enclosed for maximum arc

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

OSHPD suppression and isolation during power transfer

- Optional trip units offer system overcurrent protection
- Prevents the paralleling of two sources of power
- Permits safe and convenient manual transfer of power under load via external pushbutton initiated operation

Non-Automatic Transfer Switch

Device panel shows controls to initiate the manual transfer and control indicating lights. In addition, an optional service entrance rating may be specified. Keyed switch is mounted on the device panel.

Contents

Description
Molded Case-Based Transfer Switches
Open Transition, Manual Operation, 30-1000 A V2-T5-41
Open Transition, Non-Automatic Operation, 30-1000 A
Catalog Number Selection V2-T5-46
Technical Data and Specifications
V2-T5-46

Dimensions

V2-T5-47
Open Transition, Automatic
Operation, 30-1000 A
V2-T5-48

Catalog Number Selection

Non-Automatic Molded Case-Based Transfer Switch

Technical Data and Specifications

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections ©

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) 4/0-600	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) $250-350$
600	HMDL	(2) \#1-500	(2) \#1-500	(12) 4/0-500
600 (four-pole)	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) $4 / 0-500$
800	HNB	(4) 4/0-500	(4) 4/0-500	(12) $4 / 0-500$
1000	HNB	(4) 4/0-500	(4) 4/0-500	(12) $4 / 0-500$

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

Transfer Switch Rating (A)	Short Circuit			Ratings When Used With Upstream Fuse (kA)		
	240 V	480 V	600 V	Maximum Fuse Rating	Fuse Type ${ }^{(2)}$	600 V
30	100	65	25	200	J,T	200
70	100	65	25	200	J,T	200
100	100	65	25	200	J,T	200
150	100	65	25	400	J, T	200
200	100	65	25	400	J, T	200
225	100	65	35	400	J,T	200
300	100	65	35	400	J,T	200
400	100	65	35	600	J,T	200
600	100/65 3 ${ }^{\text {3 }}$	65/50 ${ }^{(4)}$	35/25 ${ }^{\text {5 }}$	800/1200	J, T	100/200
800	65	50	25	1200/1600	L	100/200
1000	65	50	25	1600	L	200

Notes
(1) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.
(2) Class R fuse with 100 kA rating
(3) HMDL frame rated 100 kA . HNB frame rated 65 kA
(4) HMDL frame rated 65 kA . HNB frame rated 50 kA .
(5) HMDL frame rated 35 kA . HNB frame rated 25 kA .

Dimensions

Approximate Dimensions in Inches (mm)
30-1000 A Types NTHE, NTVE-NEMA 1, 3R 12 ©

Switch Type	Enclosure			Gutter Space			Bolt Pattern					
	A	B	C	D	E	F	G	H	Standard	minals (2)		
	Height	Width	Depth	Width	Depth	Bending	Horizontal	Vertical	Line	Load	Neutral	Lb (kg)
HFD (30-100 A) ${ }^{(3)}$	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	6.22 (157.9)	10.75 (273.0)	45.24 (1049.1)	(1)\#14-1/0	(1) \#14-1/0	(3) \#14-1/0	232 (105)
HFD (150A) ${ }^{(3)}$	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	6.22 (157.9)	10.75 (273.0)	45.24 (1049.1)	(1) \#6-300	(1) \#6-300	(3) \#4-300	232 (105)
HKD (150-225 A)	48.00 (1219.2)	20.81 (528.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.59 (269.0)	11.00 (279.4)	45.50 (1155.7)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HKD (300 A)	56.00 (1422.4)	20.81 (528.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	13.59 (345.2)	11.00 (279.4)	53.50 (1358.9)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HLD (400 A)	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(1) 4/0-600	(2) \#1-500	(6) 250-350	425 (193)
HLD (400 A) ${ }^{(4)}$	53.00 (1346.2)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	11.85 (301.0)	16.00 (406.4)	50.48 (1282.2)	(2) $3 / 0-350$	(2) \#1-500	(6) 250-350	425 (193)
HLD (600 A)	64.00 (1625.6)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) $3 / 0-350$	(2) \#1-500	(12) 4/0-500	425 (193)
HLD (600 A) ${ }^{(4)}$	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) 400-500	(2) \#1-500	(12) 4/0-500	425 (193)
HMDL (600 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(2) \#1-500	(2) \#1-500	(12) 4/0-500	510 (232)
HMDL (800 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) 4/0-500	510 (232)
NB (800-1000 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.58 (446.5)	16.00 (406.4)	75.15 (1908.8)	(4) $4 / 0-500$	(4) $4 / 0-500$	(12) 4/0-500	570 (259)

Power Panel and Transformer Panel

Power Panel Type	Height	Width	Depth
Power Panel			
HFD	$11.00(279.4)$	$17.00(431.8)$	$6.81(173.0)$
HKD	$24.50(622.3)$	$11.88(301.8)$	$17.50(444.5)$
HLD	$26.00(660.4)$	$16.88(428.8)$	$17.50(444.5)$
HMDL	$36.25(920.8)$	$16.88(428.8)$	$17.50(444.5)$
NB	$36.25(920.8)$	$16.88(428.8)$	$19.00(482.6)$
Transformer Panel			
HFD	$22.00(558.8)$	$16.50(419.1)$	$6.50(165.1)$
HKD, HLD, HMDL and NB	$28.63(727.2)$	$8.25(209.6)$	$5.50(139.7)$

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable for Cu or Al wire. Consult the factory for other available terminal sizes.
(3) NTHE with multi-tap voltage selection panel.
(4) Alternate line terminals.

Transfer Switches
Molded Case-Based Transfer Switches

Molded Case-Based Transfer Switch

Open Transition, Automatic Operation, 30-1000 A

Product Description

Eaton's molded case-based switch/circuit breaker automatic transfer switch is designed to provide unmatched performance, reliability and versatility for critical standby power applications requiring open transition with time delay. Transfer switches can be equipped with an
ATC-100, ATC-300+ or ATC-900 controller.

Product Configuration

- 30, 70, 100, 150, 200, 225, $300,400,600,800,1000$ A
- 100% rated
- Two-, three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R, 12, 4X, open
- Service entrance rated

Industrial Highlights

- Double-throw, mechanically interlocked transfer mechanism
- High withstand and closing ratings
- Front accessible
- Top, bottom and side cable entry
- Internal cable gutter space
- Field-selectable, multi-tap transformer permits wide range of system voltages
- Manual operation under load with permanently affixed handle
- Internal deadfront cover
- Padlock provision
- Self-protecting switching contacts

Contents

Description
Molded Case-Based Transfer Switches
Open Transition, Manual
Operation, 30-1000 A
V2-T5-41
Open Transition, Non-Automatic Operation, 30-1000 A

V2-T5-45
Open Transition, Automatic
Operation, 30-1000 A
Features and Benefits
V2-T5-49
Standards and Certifications
V2-T5-52
Catalog Number Selection
V2-T5-52
Technical Data and Specifications V2-T5-53
Dimensions . V2-T5-54

Optional Accessories

- Overcurrent protection with thermal-magnetic trip
- Integrated distribution circuit breaker panel
- Automatic controller protective cover with padlock provision
- Surge protection device (UL 1449 3rd Edition)
- Remote annunciator controller-monitor and control single or multiple automatic transfer switches
- Ethernet gateway with Web server (Modbus TCP/IP, SNMP, BACnet)
- Space heater with thermostat

Features and Benefits

Standard and Optional Controller Features

	Automatic Controllers		
	ATC-100	ATC-300+	ATC-900
Description Basic transfer control, plant exerciser, time delays,	Standard	Standard	Standard
Source mimic diagram with LED indication	Standard	Standard	Standard
Engine test and start contact	Standard	Standard	Standard
Dual source control power input	Standard	Standard	Standard
Liquid crystal display (LCD)	-	Standard	Standard
Programmable set points and plant exerciser	-	Standard	Standard
Password protection	-	Standard	Standard
Time stamped history and event log	-	Standard	Standard
Time delay bypass	-	Standard	Standard
Go to source 2 control input	-	Standard	Standard
Pre-transfer and general alarm control outputs	-	Standard	Standard
Lockout and monitor modes	-	Standard	Standard
Source status output relay contacts	-	Standard	Standard
Modbus RTU communication	-	Standard	Standard
Manual retransfer control input	-	Optional	Standard
Source 2 input / load shed input	-	Optional	Standard
USB port-profile and data management	-	-	Standard
Preferred source selection	-	-	Standard
Dual generator capability	-	-	Standard
User configurable inputs/outputs	-	-	Standard
Advanced diagnostics and troubleshooting	-	-	Standard
with pre-/post-event data capture	-	-	Optional
Integrated load metering	-	Optional	
Load management with selective load shed	-	Optional	
DC voltage control power input	-	Optional	
Three source ATS master/slave control	-	Optional	Optional
Modbus TCP/IP communication 1 (-		
	-	-	-

Note
(1) Modbus TCP/IP option requires use of Modbus RTU port.

Basic Components of Automatic Molded Case Transfer Switches

Eaton's Superior Design Transfer

Switch Characteristics

Unmatched Performance and Versatility

Eaton's family of wallmount transfer switches offers unmatched performance, versatility and value for power switching applications. At the heart of these designs is Eaton's molded case switch, designed specifically to meet UL 1008.

Superior Main Contact Structure

All Eaton wallmount transfer switches meet or exceed the standards set forth in UL 1008 and UL 489. No other transfer switch manufacturer has met the rigid testing requirements of this combination of standards. Completely enclosed contacts add a measure of safety and reliability. It also ensures the integrity of the contact assemblies and minimizes the need for periodic maintenance of the contacts, reducing downtime.

Fast, Powerful and Safe Power Switching Mechanism

The power panel utilizes a unidirectional gear motor mechanism. The power panel can be operated manually under a FULL LOAD.

Molded Case Switch Features

- True four-pole switched neutral availability
- Totally enclosed contact assembly

Optional Integral Overcurrent Protection Capability

For service entrance and other applications, trip units can be integrated into the power switching section. This eliminates the need for separate upstream protective devices, saving cost and space.

Optional Thermal-Magnetic or Electronic Trip Units

Optional Service Entrance Rated Automatic Transfer Switch
Eaton's service entrance rated molded case breaker design is a 100% rated ATS and UL 1008 Listed.

Mechanical Interlock

Wallmount transfer switches feature a rear-mounted, fail-safe mechanical interlock to prevent paralleling of sources. This is, in addition to software interlocking and the interlocking inherently provided by the transfer mechanism.

Triple Interlocks

Load Bus Assembly

The load bus can be oriented for either top or bottom access. Top entry is standard.

Multi-Tap Voltage Selector

Eaton's industry-exclusive Multi-Tap system voltage selector allows our transfer switch to be applied on most system voltages just by proper insertion of the selector plug. Available in two configurations: Worldwide Multi-Tap with 600, 480, 415, 380, 240, 220 and 208 Vac, single- and three-phase, 50 and 60 Hz taps. North American Multi-Tap with 600, 480, 240, 208 and 120 Vac, single- and threephase, 60 Hz taps.

Multi-Tap Voltage Selector

Ease of Maintenance

Keyed quick-disconnect plugs are provided for easy and complete isolation of the control circuitry.
Maintenance can be performed on the logic independent from the power sections and still allow the user to manually transfer power under full load conditions.

Logic Disconnect Plugs

North American Voltage Selector

North American multi-tap transformer comes with 600, 480, 240, 208 and 120 Vac , single- and three-phase, and 60 Hz taps, which are all field selectable.

Transformer Panel Location

Simply remove the steel cover and move the appropriate blue flag terminal to the desired voltage. All switches are shipped with the blue flag in the 600 V position.

Transformer Panel Opened

Typical (225-1000 A) Vertical Design Transfer Switch Equipment

Shown Without the Deadfront

Standards and Certifications

- UL 1008 Listed
- CSA C22.2 No. 178 Certified
- Seismic Zone 4 qualified (CBC, IBC, UBC)
- OSHPD certification

5

OSHPD

Catalog Number Selection

Automatic Molded Case Transfer Switch

Notes

(1) $\mathrm{HFD}=200$ and $225 \mathrm{~A}, \mathrm{HLD}=600 \mathrm{~A}, \mathrm{HMD}=800 \mathrm{~A}$ for 240/120 Vac single-phase, three-wire and $208 \mathrm{Y} / 120 \mathrm{Vac}$ three-phase, four-wire systems only.
(2) Four-pole 600 A will use an NB breaker.
(3) MCB $=$ Molded Case Breaker, MCS = Molded Case Switch.

Technical Data and Specifications

Electrical Ratings

Note: For 600, 800 and 1000 A ratings, four-pole units are rated 35 kA at 480 volts. All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.

Molded Case Transfer Switch

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections (${ }^{1}$

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$150-225$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) $4 / 0-600$	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) 250-350
600	HMDL	(2) \#1-500	(2) \#1-500	(12) 4/0-500
600 (four-pole)	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) $4 / 0-500$
800	HNB	(4) $4 / 0-500$	(4) $4 / 0-500$	(12) $4 / 0-500$
1000	HNB	(4) $4 / 0-500$	(4) $4 / 0-500$	(12) $4 / 0-500$

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

Transfer Switch Rating (A)	Short Circuit			Ratings When Used With Upstream Fuse (kA)		
	240 V	480 V	600 V	Maximum Fuse Rating	Fuse Type (2)	600 V
30	100	65	25	200	J,T	200
70	100	65	25	200	J,T	200
100	100	65	25	200	J,T	200
150	100	65	25	400	J,T	200
200	100	65	25	400	J,T	200
225	100	65	35	400	J,T	200
300	100	65	35	400	J,T	200
400	100	65	35	600	J,T	200
600	100/65 3	65/50 (4)	35/25 (5)	800/1200	J,T	100/200
800	65	50	25	1200/1600	L	100/200
1000	65	50	25	1600	L	200

Notes

(1) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.
(2) Class R fuse with 100 kA rating.
(3) HMDL frame rated 100 kA . HNB frame rated 65 kA .
(4) HMDL frame rated 65 kA . HNB frame rated 50 kA .
(5) HMDL frame rated 35 kA . HNB frame rated 25 kA .

Transfer Switches
Molded Case-Based Transfer Switches

Dimensions

Approximate Dimensions in Inches (mm)

Dimension Views

Automatic Molded Case Transfer Switches-NEMA 1, 3R, 12 (1)

Switch Rating Amperes	Switch Type	Enclosure			Gutter Space		Bolt Pattern		Standard Terminals (2)			
		A Height	B Width	C Depth	D Width	E Depth	G Horizontal	H Vertical		mal Load and) Connection	Neutral Connection	Weight Lb (kg)
Molded Case												
30-100	HFD (3)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150-225	HFD (3)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
30-100	HFD (4)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150	HFD (4)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150-225	HFD (3)	35.61 (904.0)	20.06 (509.5)	11.34 (288.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	34.31 (904.0)	-	-	-	150 (68)
150-225	HKD	56.00 (1422.4)	20.81 (528.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	11.00 (279.4)	45.50 (1155.7)	-	-	-	305 (134)
300	HKD	53.00 (1346.2)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	53.50 (1358.9)	-	-	-	295 (134)
400	HLD	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	61.48 (1561.6)	-	-	-	425 (193)
400	HLD (3)	53.00 (1346.0)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	51.50 (1308.0)	-	-	-	425 (193)
600	HLD	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	62.50 (1588.0)	-	-	-	475 (214)
600	HMDL	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	480 (218)
800	HMDL (3)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	510 (232)
800-1000	HNB	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	570 (259)

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable with copper only.
(3) Alternate line terminals.
(4) With multi-tap voltage selection panel.

Power Frame-Based Transfer Switches

Contents

Description Page

Page

Power Frame-Based Transfer Switches
Open and Closed Transition, 200-5000 A

| Features, Benefits and Functions | V2-T5-56 |
| :--- | :--- | ---: |
| Standards and Certifications | V2-T5-60 |
| Product Selection | V2-T5-60 |
| Catalog Number Selection | V2-T5-61 |
| Technical Data and Specifications | V2-T5-62 |

Open and Closed Transition, 200-5000 A

Product Description

Eaton's Magnum power frame-based transfer switches are designed for a variety of standby power applications for critical and noncritical loads. They monitor both Source 1 (Normal) and Source 2 (Emergency) power sources. In the event of a Source 1 power interruption, these switches will automatically transfer the load circuits to the Source 2 power source. Once Source 1 power source has been restored, the process is automatically reversed.

Magnum transfer switches use the Eaton programmable ATC-900 automatic controller.

Product Configuration

- 200, 300, 400, 600, 800, 1000, 1200, 1600, 2000, 2500, 3000, 3200, 4000, 5000 A
- Three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 60 \mathrm{~Hz}$ or $50 / 60 \mathrm{~Hz}$
- NEMA 1,3R
- Service entrance rated

Power Frame-Based Transfer Switches

Design Highlights

- Freestanding enclosure
- High withstand closing ratings
- 100 kA short-circuit rating
- 85 kA short-time rating (0.5 sec)
- Dual drawout on ATS and bypass
- Deadfront
- Manual transfer under load
- Electrically operated
- Magnum stored energy mechanism
- Quick make / quick break switching
- Multi-tap transformer
- True four-pole switched neutral
- Mechanically interlocked
- Integral overcurrent trip option
- Integrated service entrance rating option 100\% rated per UL 1008
- OSHPD listed

Application Description

The Magnum family of transfer switches covers applications ranging from 200 to 5000 A through 600 Vac . Some of the applications are: automatic or non-automatic configurations, open or closed transition and standard or rated suitable for use as service entrance. They are designed for applications where total system coordination must be accomplished while achieving a high level of Withstand, Interrupting, and Closing performance.

Drawout construction is available for applications, such as critical life-support systems, where preventive maintenance, inspection and testing must be accomplished while maintaining continuity of power to the load.

Features, Benefits and Functions

Standard Features

- ATC-900 controller
- Drawout cassette on ATS and bypass
- Source available contacts:
- Source 1 available 1NO/1NC
- Source 2 available 1NO/1NC
- Switch position contacts:
- Source 1 position 1NO/1NC
- Source 2 position 1NO/1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Field-programmable time delays
- Time delay engine start
- Time delay normal to emergency
- Time emergency to normal
- Time delay engine cooldown
- Time delay emergency failure
- LCD color-based display for programming, system diagnostics and Help menu
- Mimic diagram with source available and connected LED indication
- Four programmable inputs and outputs
- Modbus RTU communication
- USB port for set point downloads and event recording uploads
- Password-protected access to control functions and set point programming
- Two automatic plant exercisers-load or no load, daily, 7-, 14-, 28-day or calendar date operation, 0-600 minute runtime

Optional Features

- Available UL 1449 Third Edition surge protection device (SPD)
- Automatic transfer operation with selectable (via programming) nonautomatic or automatic retransfer with fail-safe
- Space heater with thermostat
- Digital multi-function power quality metering
- DC power input for uninterrupted monitoring of ATS status
- Integrated load metering
- Expandable I/O (up to 20 I/O total)
- EtherNet TCP/IP communications
- Integrated service entrance option with 100\% rated per UL 1008
- Optional remote annunciator

Unmatched Performance and Versatility

The Eaton family of Magnum transfer switches offers unmatched performance, versatility and value for standby power applications. At the heart of these designs is the Magnum switch with the following features:

Superior Main Contact Structure

All Eaton Magnum Transfer Switches meet or exceed the standards set forth in UL 1008 and UL 1066 with high withstand, totally enclosed Magnum switches. No other transfer switch manufacturer has met the rigid testing requirements of this combination of standards. Completely enclosed contacts add a measure of safety and reliability. They also ensure the integrity of the contact assemblies and minimize the need for periodic maintenance of the contacts, reducing downtime and maintenance time.

Fast, Powerful and Safe Switching Mechanism

The mechanism uses a high speed stored energy switching mechanism. This mechanism can be operated manually under a FULL LOAD.

Ease of Coordination and Application -Short-Time Withstand Closing Rating

The use of electronic trips has allowed performance curve shaping to facilitate proper system coordination.
To facilitate improved coordination, Eaton Magnum transfer switches are UL 1008 Listed with a Short-Time Withstand Closing Rating of 85 kA at 0.5 secs (30 cycles) up to 600 V .

Magnum Power Switch
Optional Integral Overcurrent Protection Capability

Optional Digitrip™ Trip Unit

UL 1008 100\% Rated Service Entrance

For service entrance and other applications, Digitrip solid-state trip units can be integrated into the power switching section. This eliminates the need for separate upstream protective devices, saving cost and space. Available with various combinations of long, short time, instantaneous, ground fault protection and communication. Overcurrent trip selection can be made from the series of Eaton Digitrip RMS trip units including the standard Digitrip 520 or optional 520M, 520 MC or 1150.

Controller Logic

The ATC-900 Automatic Transfer Switch Controller from Eaton is a comprehensive, multifunction, microprocessorbased automatic transfer switch controller and meter. It is designed to accurately monitor power sources and provide the necessary intelligence to reliably operate a transfer switch through a series of programmed sensing and timing functions. The ATC-900 provides an unmatched degree of programming flexibility to address the needs of any system.

Controller Communications

Every ATC-900 controller includes a standard Modbus RTU communications interface with an option to upgrade to Modbus TCP/IP.

The ATC-900 is also compatible with Eaton's Power Xpert Gateway for web-based monitoring, Modbus TCP/IP, SNMP or BACnet ${ }^{\circledR} / I P$. The Power Xpert Gateway can be used to consolidate data from up to 64 devices, including communications ready transfer switch controllers, trip units and meters, as well as other Eaton devices. Versions of the Power Xpert Gateway include email event notification and data-logging functionality.

Controller Primary Functions

The ATC-900 Automatic Transfer Switch Controller offers these standard features:

- Monitor normal and emergency source voltages and frequencies
- Provide transfer and re-transfer control signals
- Provide engine/generator starting and shutdown signals
- Permit customer programming of operational set points
- Display real-time and historical information
- Permit system testing
- Store customer and factory-established parameters in nonvolatile memory
- Provide faceplate source status indication
- Provides an LCD-based display for programming and status readout

Controller Flexible Configurations

The ATC-900 controller includes four programmable inputs and outputs as a standard offering. The inputs and outputs can be assigned functions from a preset list of options, either at the factory or in the field. Additional I/O can be added at any time by adding an external I/O module. Each I/O module contains four inputs and outputs, and up to four modules can be daisy chained to the ATC-900 controller.

Controller Diagnostics and Troubleshooting

Eaton's ATC-900 controller provides users with data required to quickly identify the root cause of a backup power system failure and minimize system downtime With the DCT module, the ATC-900 stores 4 seconds of metered data every 20 msec for certain events. The data is captured 2 seconds before and 2 seconds after the event (except for a power failure, which is 4 seconds before). Oscillographic data for 10 events is stored in the controller and may be downloaded over USB or displayed graphically.

Magnum Fixed Mount Transfer Switch

2000 A, Four-Pole, NEMA 1 Enclosed, Through-the-Door Design

2000 A Three-Pole Fixed Design NEMA Behind-the-Door Enclosure

Eaton's drawout Magnum switch should be considered for any systems requiring either greater redundancy, easier maintainability, or where true selective coordination is desired.
Eaton's drawout Magnum switch provides the capability to isolate either of the two power sources (Source 1 or Source 2) and its associated logic while maintaining power to the load.

Each switching section is independent and can be replaced either with a spare switch, or for less critical replacement needs, a replacement unit is available from the factory.

Ease of Maintenance

Keyed quick-disconnect plugs are provided for easy and complete isolation of the control circuitry.

Maintenance can be performed on the logic independent from the power sections and still allow the user to manually transfer power under full load conditions.

Logic Disconnect Plugs

Transfer Switches

Power Frame-Based Transfer Switches

Deadfronts

The Magnum transfer switch comes standard with two deadfront panels mounted over the Magnum power switch or power circuit breaker. These deadfronts provide additional protection isolation from any power connections. The power connections for Source 1, Source 2 and Load connections are all in the back compartment of the transfer switch.

Interlocking for Open Transition Applications

The open transition type Magnum transfer switches feature both mechanical (cable) and electrical interlocking to prevent paralleling of sources.

Mechanical Cable Interlock

Multi-Tap Voltage Selector

Allows the transfer switch to be readily applied on most system voltages worldwide by connecting to the proper terminals. Available system voltages include 120, 208, 220, 240, 380, 415, 480, or $600 \mathrm{Vac}, 50$ or 60 Hz .

Voltage Selection Terminals

ATC-900 Controller Features

Description	Automatic Controller ATC-900
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard
Source mimic diagram with LED indication	Standard
Engine test and start contact	Standard
Dual source control power input	Standard
Liquid crystal display (LCD)	Standard
Programmable set points and plant exerciser	Standard
Password protection	Standard
Time stamped history and event log	Standard
Time delay bypass	Standard
Go to source 2 control input	Standard
Pre-transfer and general alarm control outputs	Standard
Lockout and monitor modes	Standard
Source status output relay contacts	Standard
Modbus RTU communication	Standard
Manual retransfer control input	Standard
Source 2 input / load shed input	Standard
USB port-profile and data management	Standard
Preferred source selection	Standard
Dual generator capability	Standard
User configurable inputs/outputs	Standard
Advanced diagnostics and troubleshooting with pre-/post-event	Standard
data capture	Optional
Integrated load metering	Optional
Load management with selective load shed	
DC voltage control power input	
Three source ATS master/slave control	
Modbus TCP/IP communication (

Note
(1) Modbus TCP/IP option requires use of Modbus RTU port.

Typical Layout

Basic Switch Components of Magnum Automatic Transfer Switches

Power Frame-Based Transfer Switches

Standards and Certifications

Eaton Magnum transfer switches meet or exceed all industry standards for endurance, reliability and performance. They are listed under Underwriters Laboratories UL 1008 Standard for transfer switch equipment. With certain options, they also comply with Source 2 and standby system requirements as defined in NFPA 99 for healthcare facilities.

- UL 1008-standard for safety for automatic transfer switches up to 4000 A; 5000 A available as UL 891 only
- CSA 22.2-178—Canadian transfer switch standard
- NEC Articles-517, 700, 701, 702, 708
- NFPA 110
- NFPA 99
- NEMA ICS10—Standard for transfer switch equipment
- ISO® 9000-International Organization for Standardization
- BOCA—Building Officials Code Administrators
- Seismic certified OSHPD, CBC, IBC, UBC

OSHPD

Product Selection

Eaton transfer switch equipment offers flexibility and versatility to the system designer and user. All switches include the basic features necessary for normal operation as standard. Eaton also offers an extensive array of optional features/ accessories that allows the user to customize a new transfer switch to match the application. Select the appropriate catalog number for the application. Then choose any optional features/accessories needed to complete the project requirements.

Catalog Number Selection

Using the catalog numbering system provides an overview of the ten basic style/feature categories that generate the 15-digit catalog number.

Automatic and Non-Automatic Power Frame Transfer Switches 200-5000 A

[^3]
Technical Data and Specifications

Floor-Standing Magnum
 Transfer Switch

- Ambient temperature range: $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ($-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$)
- Operating temperature range: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\left(-4^{\circ} \mathrm{F}\right.$ to $158^{\circ} \mathrm{F}$)
- Operating humidity: up to 90%
- Relative humidity (noncondensing)

Magnum Drawout

Transfer Switch

- 200-5000 A
- Two-, three-, four-pole (except 4000 A: threeand four-pole only)
- 120-600 Vac

Magnum Fixed-Mount
 Transfer Switch

- 200-3200 A
- Two-, three-, four-pole (except 3200 A: two- and three-pole only)
- $120-600 \mathrm{Vac}$

Magnum Drawout Transfer Switches
Automatic and Non-Automatic Transfer Switches
Enclosures meet all current applicable NEMA and UL standards for conduit entry, cable bending, gutter space and shielding of live components.

NEMA 1 and
NEMA 3R Enclosures
Magnum transfer switches are supplied with a front door only. The NEMA 3R are provided with a door within a door design.
The Magnum transfer switch requires rear access. If placed against a wall, then a minimum of 3 feet is needed as well as side access on at least one of the sides. Access to cable space can be via the side, bottom, top or rear.

Optional Service Entrance Rated

 Automatic Transfer SwitchEaton's service entrance rated power circuit breaker design is a 100% rated ATS and UL 1008 Listed up to 4000 A .

Transfer Switch Withstand Closing Current Ratings

Transfer Switch Ampere Rating	Short-Circuit 0.05 sec up to $600 \mathrm{Vac}(\mathrm{kA})$	Short-Time 0.5 sec up to $\mathbf{6 0 0 ~ V a c ~ (k A) ~}$
UL 1008		
200	100	85
300	100	85
400	100	85
600	100	85
800	100	85
1000	100	85
1200	100	85
1600	100	85
2000	100	85
2500	100	85
3000	100	85
3200	100	85
4000	100	-
UL 891		
4000	-	$85{ }^{(2)}$
5000	-	$85{ }^{(2)}$

Notes

(1) Ratings used for coordination with upstream breakers with short-time ratings.
(2) UL 1066 short-time withstand rating

Dimensions

Approximate Dimensions in Inches (mm)

Magnum Fixed-Mount Transfer Switches

| Ampere
 Rating | Number
 of
 Poles | A
 Height | B
 Width | C
 Depth | Shipping
 Weight
 Lb (kg) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NEMA 1 Enclosed Fixed-Mount Transfer Switch | | | | | |

NEMA 3R Enclosed Fixed-Mount Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1600(726)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1600(726)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1800(817)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2400(1090)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2400(1090)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2500(1135)$
4000	-	(1)	11	(1)	-
5000	-	(1)	11	(1)	-

Note

(1) At 4000 and 5000 A , the standard design is drawout. See drawout dimensions.

200-3200 A Fixed-Mount NEMA 1

200-3200 A Fixed-Mount NEMA 3R

Approximate Dimensions in Inches (mm)

Magnum Drawout Transfer Switches

Ampere Rating	Number of Poles	A Height	B Width	C Depth	Shipping Weight Lb (kg)
NEMA 1 Enclosed Drawout Transfer Switch					
$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1600(727)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1600(727)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1900(864)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2500(1136)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2500(1136)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2800(1273)$

NEMA 3R Enclosed Drawout Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2100(953)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2100(953)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2400(1090)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3000(1362)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3000(1362)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3300(1498)$

200-3200 A Drawout NEMA 3R

Approximate Dimensions in Inches (mm)

Magnum 4000-5000 A Units

Front View With Covers

SP = Shipping Split.
Consult factory for dimensions.

Right Side View

Connection Type (4000-5000 A Only)

Connection Type			
Line	Emergency	Load	Wireway
Cable	Cable	Cable	Yes
Bus	Cable	Cable	Yes
Cable	Bus	Cable	Yes
Cable	Cable	Bus	Yes
Bus	Bus	Cable	No
Bus	Cable	Bus	No
Cable	Bus	Bus	No
Bus	Bus	Bus	No

Magnum Drawout Transfer Switches

Ampere Rating	No. of Poles	Height	Width	C 1 Width	D Depth	Shipping Weight Lb (kg)
4000	3 or 4	90.00	86.00	92.00	68.00	(2)
		(2286.0)	(2184.4)	(2336.8)	(1727.2)	
5000	3 or 4	90.00	86.00	92.00	68.00	(2)
		(2286.0)	(2184.4)	(2336.8)	(1727.2)	

Notes

(1) Seismic mounting adds 3.00 inches (76.2 mm) width to each side or additional 6.00 inches $(152.4 \mathrm{~mm})$ to width.
(2) Consult factory.

Note: The typical Magnum ATS at 4000 and 5000 A ratings will include one cubicle with the Source 1 and Source 2 power switches or power circuit breakers. A second cubicle called a wireway is required unless bus is used for the connections per Connection Type table above. Cable connections to the wireway cubicle can be made from the top or bottom. The wireway cubicle will have removable panels on the front, and cable connections may be made from the top or the bottom. Cable connections to the power switch or power circuit breakers cubicle are made from the back. Consult factory for dimensions. The wireway width is 32.00 inches (812.8 mm).

Bypass Isolation Power Frame-Based Transfer Switches

Bypass Isolation Power Frame-Based Transfer Switches

Open and Closed Transition, 200-5000 A

Product Description

Eaton's bypass isolation transfer switch is used in life safety and other missioncritical applications where redundancy is desired and maintenance of the automatic transfer switch can be performed without interrupting power to the load. Transfer switches are equipped with the ATC-900 controller.

Product Configuration

- 200, 300, 400, 600, 800, 1000, 1200, 1600, 2000, 2500, 3000, 3200, 4000 and 5000 A
- Three- or four-pole (fourth pole is fully rated)
- Up to $600 \mathrm{Vac}, 60 \mathrm{~Hz}$ or $50 / 60 \mathrm{~Hz}$
- NEMA 1,3R
- Service entrance rated

Design Highlights

- High withstand ratings
- 100 kA short-circuit rating (0.05 sec , up to 600 Vac)
- 85 kA short-time rating (0.5 sec , up to 600 Vac)
- Dual drawout-ATS and bypass
- Deadfront
- Manual transfer under load
- Electrically operated
- Magnum stored energy mechanism
- Quick make / quick break switching
- Multi-tap transformer
- Fully rated fourth-pole (switched neutral)
- Mechanically interlocked
- Integral overcurrent trip option
- Integrated service entrance rating option

Contents

Description

Page

Bypass Isolation Power Frame-Based Transfer Switches
Open and Closed Transition, 200-5000 A
Standards and Certifications
V2-T5-67
Catalog Number Selection
V2-T5-67
Product Selection . V2-T5-68
Technical Data and Specifications V2-T5-68
Dimensions
V2-T5-69

Features

Standard Features

- ATC-900 controller
- Drawout cassette on ATS and bypass
- Source available contacts:
- Source 1 available 1NO/1NC
- Source 2 available 1NO/1NC
- Switch position contacts:
- Source 1 position 1NO/1NC
- Source 2 position 1NO/1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Field-programmable time delays
- Time delay engine start
- Time delay normal to emergency
- Time emergency to normal
- Time delay engine cooldown
- Time delay emergency failure
- LCD color-based display for programming, system diagnostics and Help menu
- Mimic diagram with source available and connected LED indication
- Four programmable inputs and outputs
- Standard Modbus 485
- Password-protected access to control functions and set point programming
- Two automatic plant exercisers-load or no load, daily, 7, 14, 28 or calendar date operation, 0-600 minute runtime

Optional Features

- Available UL 1449 Third Edition surge protection device (SPD)
- Automatic transfer operation with selectable (via programming) nonautomatic or automatic retransfer with fail-safe
- Space heater with thermostat
- Digital multi-function power quality metering
- DC power input for uninterrupted monitoring of ATS status
- Integrated load metering
- Expandable I/O (up to 20 I/O total)
- Ethernet TCP/IP communications

Transfer Switches

Bypass Isolation Power Frame-Based Transfer Switches

Magnum Bypass Isolation Front View without the Deadfront Panels-NEMA 1 Through the Door

Front Access Option 54 A is Available on All Magnum Designs

ATC-900 Controller Features

Description	Automatic Controller ATC-900
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard
Source mimic diagram with LED indication	Standard
Engine test and start contact	Standard
Dual source control power input	Standard
Liquid crystal display (LCD)	Standard
Programmable set points and plant exerciser	Standard
Password protection	Standard
Time stamped history and event log	Standard
Time delay bypass	Standard
Go to source 2 control input	Standard
Pre-transfer and general alarm control outputs	Standard
Lockout and monitor modes	Standard
Source status output relay contacts	Standard
Modbus RTU communication	Standard
Manual retransfer control input	Standard
Source 2 input / load shed input	Standard
USB port-profile and data management	Standard
Preferred source selection	Standard
Dual generator capability	Standard
User configurable inputs/outputs	Standard
Advanced diagnostics and troubleshooting with pre-/post-event	Standard
data capture	Optional
Integrated load metering	Optional
Load management with selective load shed	Optional
DC voltage control power input	
Three source ATS master/slave control	
Modbus TCP/IP communication (

Note

(1) Modbus TCP/IP option requires use of Modbus RTU port.

Bypass Isolation Power Frame-Based Transfer Switches

Catalog Number Selection

Using the catalog numbering system provides an overview of the ten basic style/feature categories that generate the 15 -digit catalog number.

Bypass Isolation Magnum Power Frame Transfer Switches 200-5000 A

Note
(1) UL 891 Listed.

Product Selection

Eaton transfer switch equipment offers flexibility and versatility to the system designer and user. All switches include the basic features necessary for normal operation as standard. Eaton also offers an extensive array of optional features/ accessories that allows the user to customize a new transfer switch to match the application. Select the appropriate catalog number for the application. Then choose any optional features/accessories needed to complete the project requirements.

Catalog Number: BIV9MGE33200XRU

The example above would specify the following:

- Bypass isolation
- Vertical configuration
- ATC-900 controller
- Magnum DS frame
- Power switch normal and emergency
- Drawout
- Three-pole
- 3200 A
- 480 V
- NEMA 3R enclosure
- UL listed

Technical Data and Specifications

Typical Bypass Isolation Switch Schematic

Transfer Switch Withstand Closing Current Ratings

Transfer Switch Ampere Rating	Short-Circuit 0.05 sec up to $600 \mathrm{Vac}(\mathrm{kA})$	Short-Time 0.5 sec up to $600 \mathrm{Vac}(\mathrm{kA})$
UL 1008		
200	100	85
300	100	85
400	100	85
600	100	85
800	100	85
1000	100	85
1200	100	85
1600	100	85
2000	100	85
2500	100	85
3000	100	85
3200	100	85
4000	100	-
UL 891		
4000	-	$85^{(2)}$
5000	-	$85^{(2)}$

Notes

(1) Ratings used for coordination with upstream breakers with short-time ratings.
(2) UL 1066 short-time withstand rating.

Dimensions

Approximate Dimensions in Inches (mm)

Magnum Bypass Isolation Drawout Transfer Switches

	Number				Shipping
Ampere	of	A	B	C	Weight Rating
Poles	Height	Width	Depth	Lb (kg)	

NEMA 1 Enclosed Drawout Transfer Switch					
$200-2000$	2	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3100(1409)$
$200-2000$	3	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3100(1409)$
$200-2000$	4	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3700(1682)$
$2500-3200$	2	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$4700(2136)$
$2500-3200$	3	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$4700(2136)$
$2500-3200$	4	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$5500(2500)$

NEMA 3R Enclosed Drawout Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4100(1861)$
$200-2000$	3	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4100(1861)$
$200-2000$	4	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4700(2134)$
$2500-3200$	2	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$5700(2588)$
$2500-3200$	3	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$5700(2588)$
$2500-3200$	4	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$6500(2951)$

Note: Add 3.00 inches (76.2 mm) to the height, 6.00 inches (152.4 mm) to the width and 3.00 inches (76.2 mm) to the depth to all enclosure dimensions to account for the seismic mounting brackets.

200-3200 A Drawout NEMA 1

200-3200 A Drawout NEMA 3R

Magnum 4000-5000 A Units-NEMA 1

Note: The 4000 and 5000 A bypass isolation ATS will include two cubicles for the Source 1 and Source 2 Normal and the Bypass power switch. An additional cubicle called a wireway is provided for the Normal and Load connections. The wireway cubicle will have removable panels on the front, and cable connections may be made from the top or the bottom. Cable connections for Emergency are made in the rear. The wireway width is 32.00 inches (812.8 mm).

SP = Shipping Split.
Consult factory for dimensions.

Magnum Bypass Isolation Drawout Transfer Switches

Ampere Rating	Number of Poles	A Height	B Width	$\begin{aligned} & \text { C } \\ & \text { Depth } \end{aligned}$	Shipping Weight Lb (kg)
NEMA 1 Enclosed Drawout Transfer Switch					
4000	2 or 3	90.00 (2286.0)	137.00 (3479.8)	60.00 (1524.0)	6900 (3133)
	4	90.00 (2286.0)	137.00 (3479.8)	60.00 (1524.0)	7600 (3450)
5000	2 or 3	90.00 (2286.0)	137.00 (3479.8)	60.00 (1524.0)	7900 (3587)
	4	90.00 (2286.0)	137.00 (3479.8)	60.00 (1524.0)	8600 (3904)
NEMA 3R Enclosed Drawout Transfer Switch					
4000	2 or 3	90.00 (2286.0)	137.00 (3479.8)	75.00 (1905.0)	7900 (3587)
	4	90.00 (2286.0)	137.00 (3479.8)	75.00 (1905.0)	8600 (3904)
5000	2 or 3	90.00 (2286.0)	137.00 (3479.8)	75.00 (1905.0)	8900 (4041)
	4	90.00 (2286.0)	137.00 (3479.8)	75.00 (1905.0)	9600 (4358)

Notes
(1) Seismic mounting adds 3.00 inches (76.2 mm) width to each side or additional 6.00 inches $(152.4 \mathrm{~mm})$ to width.
(2) Consult factory.

Contents

Description

Page

Automatic Transfer Controllers
Product Selection Guide Automatic Transfer Controllers Feature Selection Chart

V2-T5-71
ATC-100 Controller . V2-T5-75
ATC-300+ Controller . V2-T5-77
ATC-900 Controller .
V2-T5-80
Controller Replacement Guide
V2-T5-91

Product Selection Guide

Automatic Transfer Controllers Feature Selection Chart

Feature Description	ATC-100	ATC-300+	ATC-900
Transition			
Open transition	Standard	Standard	Standard
Closed transition	Not available	Not available	Standard
Timers			
Time delay normal to emergency (TDNE)	Standard	Standard	Standard
Time delay engine start (TDES)	Standard	Standard	Standard
Time delay emergency to normal (TDEN)	Standard	Standard	Standard
Time delay engine cooldown (TDEC)	Standard	Standard	Standard
Time delay emergency fail (TDEF)	Standard	Standard	Standard
Engine/Generator Exerciser			
Plant exerciser (PE) with fail-safe	Selectable-OFF, 7-, 14-, 28-day interval fixed run time 15 minutes no load/load with fail-safe	Selectable—0FF, 7-, 14-, 28-day interval, 0-600 minutes, no load/load with fail-safe	Two independent exerciser modes-OFF, daily, 7-, 14-, 28-day interval or by calendar date (up to 12 independent calendar dates). Test operations include independent transfer time delays
Source 1 Sensing			
All-phase undervoltage and underfrequency protection	Standard	Standard	Standard
All-phase overvoltage and overfrequency protection	Standard	Standard	Standard
Three-phase rotation sensing	Not available	Standard	Standard
Three-phase voltage unbalance	Not available	Standard	Standard
Source 2 Sensing			
All-phase undervoltage and underfrequency protection	Standard	Standard	Standard
All-phase overvoltage and overfrequency protection	Standard	Standard	Standard
Three-phase rotation sensing	Not available	Standard	Standard
Three-phase voltage unbalance	Not available	Standard	Standard

Transfer Switches

Automatic Transfer Controllers

Automatic Transfer Controllers Feature Selection Chart, continued

Feature Description

Manual Controls			
Test operators	Standard	Standard	Standard
Four-position test selector switch (FPSS)	Not available	Not available	Optional
Time delay bypass pushbutton	Not available	Standard	Standard
Maintenance selector switch (MSS)	Not available	Optional	Optional
Automatic/manual operation selector switch	Not available	Optional	Optional
Automatic/manual retransfer selector switch	Not available	Not available	Optional
Manual retransfer pushbutton	Not available	Optional	Optional
Indications / Status Display			
Source 1 connected / Source 2 connected	Standard	Standard	Standard
Source 1 available / Source 2 available	Standard	Standard	Standard
Source 1 tripped / Source 2 tripped	Standard	Standard	Standard
Customer Outputs			
Source 1 / Source 2 present contacts	Not available	Standard-2NO and 2NC	Not available
Source 1 available / Source 2 available contacts	Not available	Not available	Standard-1 Form C
Load sequence	Not available	Not available	Configurable-1 Form C
Selective load shed	Not available	Not available	Configurable-1 Form C
Load bank control	Not available	Not available	Configurable-1 Form C
Pre-transfer	Not available	Standard-1 Form C	Configurable-1 Form C
Pre-/post-transfer	Not available	Not available	Configurable-1 Form C
Source 1 connected	Not available	Not available	Configurable-1 Form C
Source 2 connected	Not available	Not available	Configurable-1 Form C
ATS not in automatic	Not available	Not available	Configurable-1 Form C
General alarm	Not available	Standard	Configurable-1 Form C
ATS in test	Not available	Not available	Configurable-1 Form C
Engine test aborted	Not available	Not available	Configurable-1 Form C
Cooldown in process	Not available	Not available	Configurable-1 Form C
Engine start contact status	Not available	Not available	Configurable-1 Form C
Emergency inhibit on	Not available	Not available	Configurable-1 Form C
Switch Position Indication Contact			
Source 1 position indication contact	Not available	Standard-1 Form C	Standard-1 Form C
Source 2 position indication contact	Not available	Standard-1 Form C	Standard-1 Form C

Automatic Transfer Controllers

Automatic Transfer Controllers Feature Selection Chart, continued

Feature Description	ATC-100	ATC-300+	ATC-900
Customer Inputs			
Go to emergency (Source 2)	Not available	Standard	Standard-configurable input
Load shed / emergency inhibit	Not available	Standard	Standard-configurable input
Monitor mode	Not available	Optional	Standard-configurable input
Bypass timers	Not available	Not available	Standard-configurable input
Lockout	Not available	Optional	Standard-configurable input
Manual retransfer on/off	Not available	Programmed	Standard-configurable input
Manual retransfer	Not available	Standard	Standard-configurable input
Slave in	Not available	Not available	Standard-configurable input
Remote engine test	Not available	Not available	Standard-configurable input
Preferred source selection	Not available	Not available	Standard-configurable input
Remote load test	Not available	Not available	Standard-configurable input
ATS on bypass	Not available	Not available	Standard-configurable input
Integrated Metering			
DCT metering-load side	Not available	Not available	Optional
Communications			
Modbus RTU	Not available	Optional	Standard
Modbus TCP/IP	Not available	Optional	Optional
Transfer Mode Open Transition			
Delayed-time delay neutral	Standard-based on construction	Standard-based on construction	Standard-based on construction
In-phase monitoring	Standard-based on construction	Standard-based on construction	Standard-based on construction
Load voltage decay	Not available	Not available	Standard-based on construction
Transfer Mode Closed Transition			
Closed transition	Not available	Not available	Standard-based on construction
Closed transition/In-phase	Not available	Not available	Standard-based on construction
Closed transition/In-phase/ Time delay neutral	Not available	Not available	Standard-based on construction
Closed transition/In-phase/ Load voltage delay	Not available	Not available	Standard-based on construction
Service Entrance Rating			
Source 1, Source 2 or both, and with and without ground fault protection	Not available	Optional	Optional
Stainless Steel Cover			
SS lockable cover for controller		Optional	Optional

Automatic Transfer Controllers

Automatic Transfer Controllers Feature Selection Chart, continued

5

Feature Description

Programming Selections			
Time delay normal to emergency	3 seconds (fixed)	0-1800 seconds	0-9999 seconds
Time delay emergency to normal	5 minutes (fixed)	0-1800 seconds	0-9999 seconds
Time delay engine cooldown	5 minutes (fixed)	0-1800 seconds	0-9999 seconds
Time delay engine start	3 seconds (fixed)	0-120 seconds	0-120 seconds
Time delay neutral	Not available	0-120 seconds	$0-120$ seconds or based on load voltage decay of 2-30\% of nominal
Time delay Source 2 fail	Not available	0-6 seconds	0-6 seconds
Time delay voltage unbalance	Not available	10-30 seconds	10-30 seconds
Voltage unbalance three-phase	Not available	0 or 1 (1 = enabled)	Enabled or disabled
Phase reversal three-phase	Not available	Dropout 5-20\% Pickup (DO-2\%) -3\%	Dropout 5-20\% Pickup (DO-2\%) -3\%
In-phase	Not available	0 or 1 (1 = enabled)	
Load sequencing	Not available	Not available	0-120 seconds (up to xx devices)
Pre-transfer signal	Not available	1-120 seconds	0-120 seconds
Plant exerciser	Selectable-0FF, 7-, 14-, 28-day interval, fixed run time 15 minutes, no load/load with fail-safe	Selectable-OFF, 7-, 14-, 28-day interval, 0-600 minutes, no load/ load with fail-safe	Two independent exerciser modes-OFF, daily, 7-, 14-, 28-day interval or by calendar date (up to 12 independent calendar dates). Test operations include independent transfer time delays
Preferred source selection	Not available	Not available	Source 1, Source 2 or None
Commitment to transfer in TDNE	Not available	Not available	Enabled or disabled
Retransfer mode N/A automatic or manual	Not available	Optional	Enabled or disabled
Auto daylight saving time adjustment	Not available	Not available	Enabled or disabled
System selection	Utility/generator	Utility/generator or dual utility	Utility/generator, dual utility, dual generator or three source
Voltage Specification			
System application voltage	Up to 480 Vac	Up to 600 Vac	Up to 600 Vac
Voltage measurements	Source 1 and 2	Source 1 and 2-VAB, VBC and VCA	Source 1, 2 and load-VAB, VBC and VCA
Voltage measurement range	120-480 Vac	$0-790$ Vac rms	$0-700$ Vac rms
Operating power	95-145 Vac	65-145 Vac	$\begin{aligned} & 65-160 \mathrm{Vac} \\ & 24 \mathrm{Vdc}(\pm 10 \%) \end{aligned}$
Frequency Specifications			
Frequency measurements	Source 2	Source 1 and 2	Source 1 and 2
Frequency measurement range	$50-60 \mathrm{~Hz}$	$40-70 \mathrm{~Hz}$	$40-70 \mathrm{~Hz}$
Environmental Specifications			
Operating temperature range	-20 to $+70^{\circ} \mathrm{C}$	-20 to $+70^{\circ} \mathrm{C}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature range	-30 to $+85^{\circ} \mathrm{C}$	-30 to $+85^{\circ} \mathrm{C}$	-30 to $+85^{\circ} \mathrm{C}$
Operating humidity	0 to 95% relative humidity (noncondensing)	0 to 95% relative humidity (noncondensing)	0 to 95\% relative humidity (noncondensing)
Operating environment	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Front Panel Indication			
Mimic diagram with LED indication	Unit status, Source 1 and 2 available and connected (five total)	Unit status, Source 1 and 2 available and connected (five total)	Unit status, Source 1 and 2 available and connected (seven total)
Main display	N/A	LCD-based display, 2 lines, 16 characters	LCD display, 4.3 inch color TFT (480x272)
Display language	N/A	English, French and Spanish	English, French and Spanish
Communications capable	N/A	Modbus 485	Modbus 485 or Ethernet TCP/IP
Enclosure compatibility	NEMA 1 and 3R	NEMA 1, 12, 3R and 4X UV resistant faceplate	NEMA 1, 12, 3R and 4X UV resistant faceplate

ATC-100 Controller

ATC-100 Controller

Product Description

The ATC-100 Controller is a comprehensive, multifunction, microprocessor-based ATS controller. It is a compact, self-contained, panelmounted device designed to replace traditional relay and solid-state logic panels.

Application Description

The ATC-100 Controller provides both fixed and jumper-selectable settings to allow for a range of applications. It operates from all system voltages between 120 and 480 Vac, singlephase and three-phase, at 50 or 60 Hz . In addition, a period of no control power operation is provided. The ATC-100 Controller monitors the condition of the three-phase line-to-line voltage and frequency of both the utility and generator power sources. It can also be set up for single-phase operation. The ATC-100 controller provides the necessary intelligence to ensure that the transfer switch operates properly through a series of sensing and timing functions.

Contents

Description

Page

Automatic Transfer Controllers
Product Selection Guide
V2-T5-71
ATC-100 Controller

> Standards and Certifications V2-T5-76

Technical Data and Specifications V2-T5-76
ATC-300+ Controller . V2-T5-77
ATC-900 Controller
V2-T5-80
Controller Replacement Guide V2-T5-91

The ATC-100 controller can be used with both the breaker-based design and the contactor-based design up to 400 A single- or threephase. The ATC-100 controller is designed for residential or light commercial applications. If an application is defined as an Emergency or Legally required system, then Eaton recommends that an ATC-300+ or ATC-900 controller be used. See Page V2-T5-76 for ranges and factory settings.

Features, Benefits and Functions

Standard Features

- Source available indication:
- Source 1
- Source 2
- Switch position indication:
- Source 1 position
- Source 2 position
- Source 1 and Source 2 sensing:
- Undervoltage/under frequency
- Overvoltage/over frequency
- Controller settings via jumpers located at the rear of the unit
- Mimic diagram with source available and connected LED indication
- System TEST pushbutton
- Selectable-OFF, daily, 7-, 14-, 28-day interval fixed run time 15 minutes no load/load with fail-safe

Transfer Switches

Automatic Transfer Controllers

Standards and Certifications

- UL listed component
- IEC 61000-4-2, 61000-4-3, 61000-4-4, 61000-4-5, 61000-4-6, 61000-4-11
- CISPR 11, Class B
- FCC Part 15, Class B

Technical Data and Specifications

ATC-100 Controller Specifications

Description	Specification
Input control voltage	95 to $145 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$
Voltage measurements of	Utility V_{AB} Generator V_{AB} Utility $V_{B C}$ Generator $V_{B C}$ Utility V_{CA} Generator V_{CA}
Voltage measurement range	0 to 575 Vac rms ($50 / 60 \mathrm{~Hz}$)
Voltage measurement accuracy	$\pm 1 \%$ of full scale
Frequency measurements of	Generator
Frequency measurement range	40 Hz to 70 Hz
Frequency measurement accuracy	$\pm 0.3 \mathrm{~Hz}$ over the measurement range
Operating temperature range	-20° to $+70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage temperature range	-0° to $+85^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating humidity	0 to 95% relative humidity (noncondensing)
Operating environment	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Generator start relay	$5 \mathrm{~A}, 1 / 6 \mathrm{hp} @ 250 \mathrm{Vac}$ 5 A at 30 Vdc with a 150 W maximum load
K1, K2 relays	10 A, 1-3 hp @ 250 Vac $10 \mathrm{~A} @ 30 \mathrm{Vdc}$
Enclosure compatibility	NEMA 1, NEMA 3R and NEMA 12 UV-resistant ATC-100 faceplate

Adjustable Features with Range and Factory Default

Set Point	Fixed/ Adjustable	Description	Range	Factory Default Breakers	Contactors
TDES	Fixed	Time delay engine start	3 seconds	3 seconds	3 seconds
TDNE	Jumper-selectable	Time delay normal to emergency	2 or 15 seconds	15 seconds	15 seconds
TDEN	Fixed	Time delay emergency to normal	5 minutes	5 minutes	5 minutes
TDEC	Fixed	Time delay engine cool-off	1 minute	1 minute	1 minute
NOM FREQ	Jumper-selectable	Nominal frequency	50 or 60 Hz	As ordered	As ordered
NOM VOLTS	Jumper-selectable	Nominal voltage	120, 208, 220, 230, 240, 380, and 480 V	As ordered	As ordered
S1 UV DROP	Fixed	Utility undervoltage dropout	80\% of NOMV	80\% of NOMV in volts	80\% of NOMV in volts
S2 UV DROP	Fixed	Generator undervoltage dropout	80\% of NOMV	80% of NOMV in volts	80\% of NOMV in volts
S1 UV PICK	Fixed	Utility undervoltage pickup	90\% of NOMV	90% of NOMV in volts	90\% of NOMV in volts
S2 UV PICK	Fixed	Generator undervoltage pickup	90\% of NOMV	90% of NOMV in volts	90\% of NOMV in volts
S2 UF DROP	Fixed	Utility underfrequency dropout	90\% of NOMF	90% of NOMF in hertz	90\% of NOMF in hertz
S2 UF PICK	Fixed	Generator underfrequency pickup	95\% of NOMF	95\% of NOMF in hertz	95\% of NOMF in hertz
S2 OF DROP	Jumper-selectable	Generator overfrequency dropout	Off or 115\% of NOMF (contactor)	Off	115\%
S2 OF PICK	Jumper-selectable	Generator overfrequency pickup	Off or 110\% of NOMF	Off	110\%
Generator test	Jumper-selectable	Generator test programming	7-, 14- or 28-day	7-day	7-day
Test mode	Jumper-selectable	Test mode	Off, No Load, Load	Off	Off
TER	Fixed	Engine run test time	15 minutes	15 minutes	15 minutes
PHASES	Jumper-selectable	Three-phase or single-phase	1 or 3	As ordered	As ordered
TDEF	Fixed	Time delay emergency fail timer	6 seconds	6 seconds	6 seconds
TDN	Jumper-selectable	Time delay neutral	Disabled (0 seconds) or enabled (2 seconds)	Enabled (2 seconds)	Enabled (2 seconds)

ATC-300+ Controller

Contents

Description

Page

Automatic Transfer Controllers

Product Selection Guide .	V2-T5-71	
ATC-100 Controller		
ATC-300 + Controller .	V2-T5-77	
\quad V2-T5-79		
Technical and Certifications	V2ta and Specifications	V2-T5-79
ATC-900 Controller .	V2-T5-91	

ATC-300+ Controller

Product Description

Transfer switches are equipped with the high-performance ATC-300+ digital transfer controller, receive rock-solid monitoring, status reporting and transfer control operation. Its superior design and robust construction make the ATC-300+ the industry benchmark for critical and distributed power systems.

Application Description

Eaton's ATC-300+ ControllerBased Automatic Transfer Switch is designed to provide unmatched performance, reliability and versatility for critical standby power applications.

Features, Benefits and Functions

Standard Features

- Source available indication:
- Source 1
- Source 2
- Switch position indication:
- Source 1 position
- Source 2 position
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance
- Field-programmable time delays
- LCD-based display for programming, system diagnostic and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- Engine TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe
- Modbus RTU communication
- Control Inputs: Go To Emergency (Source 2), Lockout, Monitor Mode
- Relay Outputs (Form C):
- Pre-transfer, General Alarm
- Bypass Time Delay pushbutton
- Password protected access

Optional Features

- Suitable for use as service equipment in the standard enclosure size when used with breaker-based design transfer switches
- UL 1449 3rd Edition surge protection devices
- Integral overcurrent protection available when used with breaker-based design transfer switches
- Stainless steel cover for controller
- Manual retransfer from emergency to normal
- Load shed/emergency inhibit
- HMi Remote Annunciator Controller

Transfer Switches

Automatic Transfer Controllers

ATC-300+ Front Panel Display and Button Functions

The following set points are programmable if the corresponding feature is programmed.
ATC-300+ Programming Features/Set Points (1)

Set Point	Set Point Units	Description	Range	Factory Default
TDES	Minutes: seconds	Time delay engine start	0-120 seconds	0:03
TDNE	Minutes: seconds	Time delay normal to emergency	0-1800 seconds	0:00
TDEN	Minutes: seconds	Time delay emergency to normal	0-1800 seconds	5:00
TDEC	Minutes: seconds	Time delay engine cool-off	0-1800 seconds	5:00
TDN	Minutes: seconds	Time delay neutral	0-120 seconds	0:00
PLANT EXER	Days	Plant exerciser programming	Off, daily, 7-day, 14-day or 28 day	Off
TEST MODE	-	Test Mode	0, 1 or 2 ($0=$ no load engine test, $1=$ load engine test, $2=$ disabled)	0
TER	Hours: minutes	Engine run test time	0-600 min	5:00
TPRE	Minutes: seconds	Pre-transfer delay timer	0-120 sec	0:00
PHASES	-	Three-phase or single-phase	1 or 3	As ordered
VOLT UNBAL	Volts	Voltage unbalanced	0 or 1 (1 = enabled)	1
UNBAL DROP \%	Percent	Percent for unbalanced voltage dropout	5-20\% of phase voltage unbalance	20\%
UNBAL PICK \%	Percent	Percent for unbalanced voltage pickup	Dropout minus (UNBAL DROP \% -2) to 3\%	10\%
UNBAL DELAY	Seconds	Unbalanced delay timer	10-30	0:20
TDEF	Seconds	Time delay emergency fail timer	0-6 sec	6
PHASE REV	-	Phase reversal	OFF, ABC or CBA	OFF

Note
(1) Complete list of programming selections found in IB01602009E.

- UL listed component
- Meets intent of UL 991, 1008
- Meets IEC 1000-4-2, 1000-4-3, 1000-4-4, 1000-4-5, 1000-4-6, 1000-4-11
- Meets CISPR 11, Class A
- Complies with FCC Part 15, Class A

Technical Data and Specifications

ATC-300+ Controller Specifications

Description		Specification
Input control voltage		65 to $145 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$
Voltage measurements of		Source 1 $V_{A B}$ Source 2 $V_{A B}$ Source 1 $V_{B C}$ Source 2 $V_{B C}$ Source 1 $V_{C A}$ Source 2 $V_{C A}$
Voltage measurement range		0 to 790 Vac RMS ($50 / 60 \mathrm{~Hz}$)
Voltage measurement accuracy		$\pm 1 \%$ of full scale
Frequency measurements of		Source 1 and Source 2
Frequency measurement range		40 Hz to 70 Hz
Frequency measurement accuracy		$\pm 0.3 \mathrm{~Hz}$ over the measurement range
Undervoltage dropout range:	Breaker/switch style ATS	50 to 97% of the nominal system voltage
	Contactor style ATS	78 to 97% of the nominal system voltage
Undervoltage pickup range:	Breaker/switch style ATS	(Dropout $+2 \%$) to 99\% of the nominal system voltage
	Contactor style ATS	(Dropout $+2 \%$) to 99\% of the nominal system voltage
Overvoltage dropout range:	Breaker/switch style ATS	105 to 120\% of the nominal system voltage
	Contactor style ATS	105 to 110\% of the nominal system voltage
Overvoltage pickup range:	Breaker/switch style ATS	103% to (dropout -2\%) of the nominal system voltage
	Contactor style ATS	103% to (dropout -2\%) of the nominal system voltage
Underfrequency dropout range:	Breaker/switch style ATS	90 to 97% of the nominal system frequency
	Contactor style ATS	90 to 97% of the nominal system frequency
Underfrequency pickup range:	Breaker/switch style ATS	(Dropout +1 Hz) to 99% of the nominal system frequency
	Contactor style ATS	(Dropout +1 Hz) to 99% of the nominal system frequency
Overfrequency dropout range:	Breaker/switch style ATS	103 to 110\% of the nominal system frequency
	Contactor style ATS	103 to 105\% of the nominal system frequency
Overfrequency pickup range:	Breaker/switch style ATS	101% to (dropout -1 Hz) of the nominal system frequency
	Contactor style ATS	101% to (dropout -1 Hz) of the nominal system frequency
Operating temperature range		$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $+158^{\circ} \mathrm{F}$)
Storage temperature range		$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating humidity		0 to 95\% relative humidity (noncondensing)
Operating environment		Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Generator start relay		$5 \mathrm{~A}, 1 / 6 \mathrm{Hp}$ at 250 Vac
		5 A at 30 Vdc with a 150 W maximum Load
K1, K2, pretransfer, alarm relays		$10 \mathrm{~A}, 1-3 \mathrm{hp}$ at 250 Vac
K3, K4		10 A at 30 Vdc
Applicable testing		UL recognized component
		Meets UL 1008
		Meets Intent of UL 991
		Meets IEC 1000-4-2, 1000-4-3, 1000-4-4, 1000-4-5, 1000-4-6, 1000-4-11
		Meets CISPR 11, Class A
		Complies with FCC Part 15, Class A
Enclosure compatibility		NEMA 1, NEMA 3R and NEMA 12
		UV resistant ATC-300+ faceplate

Automatic Transfer Controllers

ATC-900 Controller

5

ATC-900 Controller

Product Description

Eaton's ATC-900 brings intelligence, adaptability, and enhanced supervisory and programming capabilities to Eaton's complete transfer switch product offering including contactor-, breakerand Magnum-based transfer switches. The one standard model concept offers a variety of monitoring and control features, selective load shedding, remote load testing, along with event logging/recording and Modbus communications. With configurable monitoring and control features and addon accessory modules, the ATC-900 provides the flexibility to meet current and future system needs.

Application Description

High reliability makes the ATC-900 ideal for missioncritical installations in the healthcare, water, industrial and data center industries. An intelligent control architecture allows the ATC-900 to address virtually any system requirements. Typical applications include utility-toutility, utility-to-generator and generator-to-generator transfer pairs, and advanced programming features provide for control of threesource systems. Design flexibility allows for operations with open, inphase, delayed or closed transition platforms.

Contents

Description
Automatic Transfer Controllers
Product Selection Guide . V2-T5-71
ATC-100 Controller
ATC-300+ Controller
V2-T5-77
ATC-900 Controller
Technical Data and Specifications
V2-T5-90
Dimensions
V2-T5-90
Controller Replacement Guide
V2-T5-91

Features, Benefits and Functions

Ease of use is a major benefit of the ATC-900 controller. The simple yet powerful user interface includes many intuitive operating features. The color display and LED indications provide enhanced operator visibility of transfer switch status and system detail. Clear operational focus was achieved through design simplicity. Front arrow keys allow for quick screen navigation, removal of codes and abbreviations avoid potential confusion, and refined data screens provide for ease of viewing and edits.

Primary Functions

The ATC-900 Automatic Transfer Switch Controller offers these standard features:

- Monitor normal and emergency source voltages and frequencies
- Provide transfer and retransfer control signals
- Provide engine/generator start and shutdown signals
- Permit user programming of operational set points
- Display real-time and historical information
- Permit system testing
- Store customer and factory established parameters in nonvolatile memory
- Provide faceplate source status indication
- Provide an LCD for programming and status readouts

Features and Benefits

- LCD screen for system status, programming, system diagnostics, help, and troubleshooting
- Event logging and recording, 450 time stamped events
- 0-600 V field programmable system voltage flexible configuration with assignable inputs and outputs
- Three-source ATS control-master and slave controller functionality
- Selective, automatic load shedding
- Industry standard communication protocols-Modbus RTU and/or Modbus TCP/IP communications interface
- USB drive for uploading and downloading of event data
- USB drive for uploading and downloading programmed set points
- Calculates positive and negative sequence voltage and current components to determine an unbalanced or fault condition

Automatic Transfer Controllers

ATC-900 User Interface

ATC-900 Connections

Transfer Switches

Automatic Transfer Controllers

ATC-900 Features

Features	ATC-900
Hardware	
4.3-inch color TFT LCD display	\square
UV-resistant faceplate	\square
Mimic diagram and LED status indicators	\square
Suitable for application over a wide range of environmental conditions	\square
Positive feedback membrane pushbuttons for application in harsh environments	■
Help function for detailed description of displayed message	\square
Password protected system test pushbutton	\square
Bypass time delay pushbutton	\square
Form C engine start contact for Source 1 and Source 2	\square
S1 and S2 available Form C contacts	\square
Self-diagnostic and system diagnostic functions with LED indication	\square
DC power input	Optional
Metering	
True rms voltage sensing of Source 1, Source 2 and Load	\square
Frequency sensing of Source 1, Source 2 and Load	\square
Voltage unbalance and phase rotation sensing	■
Load current sensing	Optional
Sampling at 64 samples per cycle	Optional
Source 1 voltages (three-phase)	\square
Source 2 voltages (three-phase)	\square
Load voltages (three-phase)	\square
Source 1 frequency	■
Source 2 frequency	\square
Load frequency	■
Load currents (three-phase)	Optional
Load kW	Optional
Load kvar	Optional
Load kVA	Optional
PF	Optional
Programming	
Programmable set points stored in nonvolatile memory	\square
System monitoring with historical data storage and display	\square
Digital set points for accurate and consistent performance	\square
Password-protected access to control functions and set point programming	\square
Four programmable control inputs	\square
Four programmable control outputs	\square
Expandable I/O modules (up to 20 I/O total)	Optional
Automatic plant exerciser-two plant exerciser schedules, Off, daily, 7-day, 14-day, 28-day, calendar, separate TDNE, TDEN, TDEC timers from normal operation, control input provided for remotely initiating an engine test	■
Communications	
Modbus RTU	\square
Modbus TCP/IP	Optional
USB port for set point configuration and event-recording downloads	■
Event History	
320 time-stamped events	■
2 seconds of metered data stored before and after a transfer event	Optional

ATC-900 Programmable Set Points

The table below lists only controller features; switch features are not listed, as they are defined by switch construction. Transition settings are specific to the transfer switch construction.

Features and Set Points

Option Number	Description	Range	Factory Default
General Settings			
-	Set new password	0000-9999	0900
-	Selected language	English, French or Spanish	English
-	Nominal frequency	50 or 60 Hz	As ordered
-	Nominal voltage	$110-600 \mathrm{~V}$	As ordered
-	Number of phases	1 or 3	As ordered
-	Number of generators	0, 1 or 2	1
-	Preferred source	Source 1 or Source 2	Source 1
-	PT ratio	2:1-500:1	As ordered
-	CT ratio	200-5000	-
-	Daylight saving time	On or Off	1
-	Operating mode	Stand-alone/master or slave	Master
-	Phase sequence check	ABC, CBA or Off	Off
-	Commitment to transfer in TDNE	Yes or no	No
-	Manual retransfer	Auto, manual or external	As ordered
-	Modbus address	1-247	1
-	Modbus baud rate	$0=9600,1$, even	9600
		$1=9600,1$, odd	-
		$2=9600,2$, none	-
		$3=9600,1$, none	-
		$4=19,200,1$, even	-
		$5=19,200,1$, odd	-
		$6=19,200,2$, none	-
		$7=19,200,1$, none	-

Transition Settings

47	Closed transition		
	Closed transition On or Off	On or Off	As ordered
	Closed voltage difference	1-5\%	2\%
	Closed frequency difference	$0.0-0.3 \mathrm{~Hz}$	0.3
32f/32d	Open-in-phase transition		
	In-phase-On or Off	Disable, in-phase default to alarm, in-phase default to open transition	As ordered
	In-phase frequency difference	$0.0-3.0 \mathrm{~Hz}$	1.0
-	Synchronization timer	1-60 minutes	5
32a/32d	Open-delayed transition		
	Time delay neutral	0-600 seconds	0
	Load voltage decay	2-30\% of nominal voltage	6\%
Time Delays			
1a	Time delay normal to emergency	0-9999 seconds	0:00
3 a	Time delay emergency to normal	0-9999 seconds	5:00
35 A	Time delay pre-transfer	0-120 seconds	0:01
35 C	Time delay post-transfer	0-120 seconds	0:10
2 A	Time delay engine 1 start	$0-120$ seconds (0-15,540 sec with optional DCT module)	0:03
-	Time delay engine 2 start	$0-120$ seconds (0-15,540 sec with optional DCT module)	0:03
4A	Time delay engine cool-off	0-9999 seconds	5:00
7 A	Time delay engine fail timer	0-6 seconds	0:06
-	Voltage unbalance time delay	10-30 seconds	0:30

Transfer Switches

Automatic Transfer Controllers

Features and Set Points, continued

Option Number	Description	Range	Factory Default
Source Settings			
26P	Source 1 undervoltage dropout	70-97\% of nominal	80\%
	Source 1 undervoltage pickup	(dropout $+2 \%$) to 99\% of nominal	90\%
5P	Source 2 undervoltage dropout	70-97\% of nominal	80\%
	Source 2 undervoltage pickup	(dropout $+2 \%$) to 99\% of nominal	90\%
26K	Source 1 overvoltage dropout	105-120\% of nominal ($0=$ disabled)	115\%
	Source 1 overvoltage pickup	103\% of nominal to (dropout -2%) ($0=$ disabled)	105\%
5K	Source 2 overvoltage dropout	105-120\% of nominal ($0=$ disabled)	115\%
	Source 2 overvoltage pickup	103\% of nominal to (dropout -2%) ($0=$ disabled)	105\%
26J	Source 1 underfrequency dropout	90-97\% of nominal ($0=$ disabled)	94\%
	Source 1 underfrequency pickup	(dropout + 1 Hz) to 99\% of nominal ($0=$ disabled)	96\%
5J	Source 2 underfrequency dropout	90-97\% of nominal ($0=$ disabled)	94\%
	Source 2 underfrequency pickup	(dropout + 1 Hz) to 99\% of nominal ($0=$ disabled)	96\%
26N	Source 1 overfrequency dropout	103-110\% (0 = disabled)	106\%
	Source 1 overfrequency pickup	101\% to (dropout -1 Hz) (0 = disabled)	104\%
5 N	Source 2 overfrequency dropout	103-110\% (0 = disabled)	106\%
	Source 2 overfrequency pickup	101\% to (dropout -1 Hz) (0 = disabled)	104\%
26L	Source 1 percent for unbalanced voltage dropout	$5-20 \%$ of phase-to-phase voltage unbalance ($0=$ disabled)	12\%
	Source 1 percent for unbalanced voltage pickup	3% to (dropout -2%) (0 = disabled)	10\%
5 L	Source 2 percent for unbalanced voltage dropout	$5-20 \%$ of phase-to-phase voltage unbalance ($0=$ disabled)	12\%
	Source 2 percent for unbalanced voltage pickup	3% to (dropout -2%) (0 = disabled)	10\%

Engine Test/Plant Exerciser (PE1 and PE2 are independently programmable)

6B	Engine test pushbutton on panel		
	Test mode	No load, load transfer, disabled	Load transfer
	Engine run test time	0-600 minutes	Load transfer
23M	PE time delay normal to emergency	0-9999 seconds	1 minute
	PE time delay emergency to normal	0-9999 seconds	1 minute
	PE time delay engine cooldown	0-9999 seconds	5 minutes
	PE1/PE2 test mode	No load, load transfer, disabled	Disabled
	PE1/PE2 run time	0-600 minutes	30 minutes
	PE1/PE2 schedule	Off, daily, 7-day, 14-day, 28-day or calendar date (up to 12 user-specified dates)	30 minutes
	PE1/PE2 calendar date	Month: 1-12; Day: 1-31	30 minutes
	PE1/PE2 day of week	1 Sunday, 2 Monday, 3 Tuesday, 4 Wednesday, 5 Thursday, 6 Friday or 7 Saturday	30 minutes
	PE1/PE2 plant start time	HH:MM AM/PM	30 minutes
Accessory I/O			
-	Accessory I/O modules	0-4	-

Flexible Configuration

Designed for scalability, the ATC-900 can be configured for a wide variety of applications. A mix-and-match approach to features allows the user to build a transfer switch controller that meets the precise application needs.

The ATC-900 controller includes four user configurable inputs and outputs. The inputs and outputs can be assigned functions from a predefined list of options either at the factory or in the field.

- Inputs
- Monitor mode
- Bypass timers
- Lockout
- Manual retransfer On or Off
- Manual retransfer
- Slave in
- Remote engine test
- Preferred source selection
- Go to emergency
- Emergency inhibit
- ATS on bypass
- Go to neutral
- Outputs (control)
- Load sequence
- Selective load shed
- Load bank control
- Pre-/post-transfer
- Pre-transfer
- Post-transfer
- User remote control
- Outputs (status/alarms)
- Source 1 available (standard)
- Source 2 available (standard)
- Source 1 connected
- Source 2 connected
- ATS not in automatic
- General alarm
- ATS in test
- Engine test aborted
- Cooldown in process
- Engine start contact status
- Generator 1 start status
- Generator 2 start status
- Emergency inhibit on
- ATS on bypass

Additional I/O can be added at any time by adding an external I/O module. Each I/O module contains four inputs and outputs and up to four modules can be daisy chained to the ATC-900 controller.

I/O Module—The ATC-900 optional I/O module provides users with four additional assignable inputs and outputs. Up to four I/O modules can be added to an ATC-900 controller providing a total of 20 inputs and outputs.

Automatic Transfer Controllers

ATC-900 Metering

ATC-900 Main Screen Shows Current Values
The DCT module incorporates a current transformer interface to the ATC-900, allowing current to be metered along with voltage and frequency. Combined with the ATC-900, the DCT module serves as a multifunction power meter and provides measurement of the listed electrical parameters. Readings are displayed on the ATC-900 controller display or can be monitored through Modbus 485.

DCT Module Attached
Current Voltage Frequency Metering Data

Metering Unit	Accurac	ot
Current		
IA, IB, IC Amps	$\pm 1 \%$ of reading	Accuracy range 5-100\%
Voltage		
VAB, VBC, Volts VCA	$\pm 1 \%$ of reading	Applicable to volt range of 34-721 Vac
Frequency		
Frequency Hz	$\pm 0.2 \mathrm{~Hz}$ of reading	Range is $20-255 \mathrm{~Hz}$

Power and Energy
Metering Data

Power Metering	Units	Accuracy	Notes
Power	kW	$\pm 2 \%$ of reading	Approx. 1 -second update
kVA	kVA	$\pm 2 \%$ of reading	Approx. 1 -second update
kvar	kvar	$\pm 2 \%$ of reading	Approx. 1 1-second update
PF (power factor)	-	0 to ± 1.00	-

Features

Feature Overview	Integrated ATC-900 Meter
Instrumentation	
Current, per phase	\square
Current Demand	-
Voltage, per phase (L-L)	■
Min. Max. Readings	-
Frequency	\square
Power	
Real, reactive and apparent power total (W,VAR,VA)	\square
Power factor, total	\square
Energy	
Real, reactive and apparent energy, total (Wh,VAR,VAh)	-
Communications	
RS-485, Modbus RTU, Modbus ASCII	\square
Voltage Inputs (measurement category)	
Range: universal, auto-ranging up to 416 Vac $L-N, 721$ Vac L-L Supported hookups: 3-element wye or delta Input impedance: 2 m ohm/phase Burden: $0.0022 \mathrm{VA} /$ phase at 120 V Fault withstand: meets IEEE C37.90.1	
Current Inputs	
5 A maximum Burden: 0.005 VA per phase maximum at 11 A Pickup current: 0.1% of nominal Connections: screw terminals Maximum input wire gauge: AWG \#12/2.5 mm ${ }^{2}$ Fault withstand: $100 \mathrm{~A} / 10$ seconds, $300 \mathrm{~A} / 3$ seconds, $500 \mathrm{~A} / 1$ second	
Isolation	
All inputs are isolated to 2600 Vac	
Measurement Methods	
Voltage, current: true rms Power: sampling at 64 samples per cycle on all channels measured rea A/D conversion: 16 simultaneous 12 -bit analog to digital converters	Itaneously

Load Metering

Diagnostics and Troubleshooting

In a mission-critical application, a failure to transfer to the backup power system requires quick and decisive action. Eaton's ATC900 controller provides users with the data required to quickly identify the root cause of a backup power system failure and minimize system downtime. This data allows the user to identify a specific event and obtain the detailed event information including a step by step breakdown of the transfer sequence.
Historical Data

Historical Data			Reset Date		
Source 1 Available	4795	hours	10 min	01/10/11	Reset
Source 1 Connected	4720	hours	5 min	01/10/11	Recet
Source 1 Engine Run	0	hours	0 min .	01/10/11	Reset
Source 2 A vailable	515	hours	38 min	01/10/11	Reset
Source 2 Connected		hours	20 min	01/10/11	Reset
Source 2 Engine Run	515	hours	22 min	01/10/11	Reset
Tier 4 Timer	4750	hours	38 min .	01/10/11	Reset
Load Energized	4800	hours	25 min .	01/10/11	Reset
Number of Transfers	28	hours	35 min .	01/10/11	Reset
		Reset AII Counters			

Historical Data Display
The historical data display indicates historical and cumulative counter values as follows:

- Source 1 available
- Source 1 connected
- Source 1 engine run
- Source 2 available
- Source 2 connected
- Source 2 engine run
- Tier IV timer
- Load energized
- Number of transfers

Historical counter resets are date and time-stamped events that are captured in the event log.

Event Summary

Event Summary Display

The ATC-900 controller stores 100 transfer summaries, 350 transfer details, 100 alarms and 20 time adjustments.
Events include:

- Actions of the transfer sequence
- Alarms
- Changes to the set points
- Changes to the time/date
- Resetting a historical counter
- Engine run test
- Time-stamping resolution of 1 second.

Event Details

Event Details Display
Each transfer event can be exploded to view a step by step, time stamped, sequence of operation for a transfer event. All metered values are also logged for each event and can be viewed on the event data screen. Time stamping resolution of 0.1 seconds.

Automatic Transfer Controllers

Hi-Speed Capture

Hi-Speed Capture		
05/28/11	4:28:15 PM C	Closed Transition to Source 1
05/28/11	4:04:36 PM T	Transfer to Source 2
05/02/11	9:54:33 PM C	Closed Transition to Source 1
05/02/11	9:54:10 PM T	Transfer to Source 2
05/02/11	8:15:20 AM S	Source 1 Undervoltage
03/31/11	11:05:44 AM C	Closed Transition to Source 1
03/31/11	8:35:33 AM T	Transfer to Source 2
03/03/11	10:02:05 AM C	Closed Transition to Source 1
03/03/11	8:35:53 AM T	Transfer to Source 2
03/03/11	8:35:40 AM S	Source 1 Undervoltage
Main Menu	USB Download	d $<-$4 seconds of Hi-Speed Data Data

High Speed Capture Display, Pre and Post Event

The ATC-900 stores metered data updated on a continuous 20 millisecond basis for specific events. The data is captured 2 seconds before and 2 seconds after the event (except for a power failure, which is 4 seconds before). Oscillographic data for 10 events is stored in the controller and may be downloaded over USB or displayed graphically.

- Events include:
- Source unavailability actions that initiate a transfer sequence (undervoltage, overvoltage, etc.)
- Successful transfers (at the point of breaker/ contactor closure)
- Unsuccessful transfers (at the point of breaker/contactor failure to close or open)

Industry Standard Communication Protocol

Every ATC-900 controller includes a standard Modbus RTU communications interface with an option to upgrade to Modbus TCP/IP.

The ATC-900 is also compatible with Eaton's Power Xpert Gateway for web-based monitoring, Modbus TCP/IP, SNMP, or BACnet/IP. The Power Xpert Gateway can be used to consolidate data from up to 64 devices, including communications ready transfer switch controllers, trip units and meters, as well as other Eaton devices. Versions of the Power Xpert Gateway include email event notification sand data-logging functionality.

Eaton ATC-900 Setpoint Editor (EASE)

The Setpoint Editor Software program allows the user to create, edit and save set point configuration files for the ATC-900 controller using a laptop. Software can be downloaded from the Eaton website (www.eaton.com/ATS).

HMi Remote Annunciator and Controller

The HMi Remote Annunciator and Controller monitors and controls up to eight transfer switches on a 7-inch LCD touch screen. It is compatible with either Modbus RTU or Modbus TCP/IP protocols. A basic mimic bus for each transfer switch displays source availability, source connected and preferred source. Users can drill down to metered source values and event history for each transfer switch. All control features are password-protected and include engine test, transfer to emergency (peak shaving), manual retransfer and bypass time delays.

HMi Remote Annunciator and Controller

USB Programming Port

Every ATC-900 transfer switch includes a front panel, NEMA 4X rated USB port for use in configuring set points or downloading event data to a USB flash drive. To reduce the time spent on site for commissioning, set points can be configured at a PC using the ATC-900 configuration software and saved to a USB flash drive to be uploaded to one or multiple controllers. Set points are also easily copied from one controller to another.

Downloading event capture data provides the user the ability to more thoroughly analyze high-speed capture data using a PC, or data can be emailed to Eaton's Technical Support Team when off site troubleshooting support is required.

USB Programming Port

Power Xpert Architecture with ATC-900

Special Applications

Three-Source ATS Control

The ATC-900 Master/Slave controller functionality provides the user with the ability to use two independent transfer switches in three-source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS.

In the event of a Source 1 power failure, the Master ATS engine start relay closes signaling the Slave ATS to start both generators. (Note: The Slave ATS requires continuous power using either the DCT Module for a DC power input or a UPS input.) The Master ATS handles all transfer time delays between the utility to generator transfer. If the preferred generator does not start within the programmed time delay, the Slave ATC-900 will initiate a transfer to the non-preferred generator. If "None Preferred" is selected, then both generators will start and the Slave ATS will transfer to the first generator source available. The ATC-900 will sense the load is connected to a good source and shut down the second generator.

Load Management

The ATC-900 includes several features to enhance the user's ability to manage load while on the alternate source.

- Integrated load metering: provides metering data that allows the user to monitor energy utilization and manage system loading
- Selective load shedding: selectively drop non-essential loads when a user-defined kW level is reached. The transfer switch remains on generator
- Load shed to neutral (where ATS construction allows): provides the ability to load shed to a neutral position from a generator source
- Pre-/post-transfer signals: provides the ability to stop select loads during the transfer process
- Load bank disable output: disengages a load bank if utility power is lost during an engine test
Three-Source Transfer Switch Arrangement

Automatic Transfer Controllers

Technical Data and Specifications

Technical Specifications

Parameter	Specification
Control power	$120 \mathrm{Vac}(50 / 60 \mathrm{~Hz})$ (operating range $65-160 \mathrm{Vac}$) or $24 \mathrm{Vdc}(\pm 10 \%)$ with optional DCT module
Power consumption	18 VA
Environmental conditions	
Operating temperature	-4 to $+158{ }^{\circ} \mathrm{F}\left(-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Operating humidity	Up to 90\% relative humidity (noncondensing)
Enclosure compatibility	NEMA 12 (standard mounting) NEMA 4/4X (mounted with gasket between panel and device faceplate) NEMA 3R (outdoor) UV resistant ATC-900 faceplate
System voltage application	120-600 Vac (50/60 Hz) (single- or three-phase)
Voltage measurements	Source 1, Source 2 and Load (VAB, VBC, VCA for three-phase system)
Voltage measurement range	0-700 Vac
Voltage measurement accuracy	$\pm 1 \%$ of reading
Frequency measurements	Source 1 and Source 2
Frequency measurement range	$40-80 \mathrm{~Hz}$
Frequency measurement accuracy	$\pm 0.1 \mathrm{~Hz}$
Applicable testing	UL recognized component 2009 IBC, 2010 CBC and OSHPD certified in ATS assemblies Complies with UL 991 environmental tests Complies with IEC 61000-4-2, 61000-4-3, 61000-4-4, 61000-4-5 and 61000-4-6 Complies with CISPR 11, Class A Complies with FCC Part 15, Subpart B, Class A
CSA conformance	C22.2 No. 178-1978 (reaffirmed 1992)
CE mark	European standards conformance

Dimensions

Approximate Dimensions in Inches (mm)
ATC-900

Additional Information

Instruction bulletin: IB01602088E
Web-based demo: www.eaton.com/ats

Contents

Description

Page

Automatic Transfer Controllers

Product Selection Guide .	V2-T5-71	
ATC-100 Controller		
ATC-300 + Controller .	V2-T5-77	V2-T5-80
ATC-900 Controller		
Controller Replacement Guide		
ATC-100 Controller Replacement Kits	V2-T5-91	
ATC-300 Controller Replacement Kits	V2-T5-92	
ATC-300+ Controller Replacement Kits	V2-T5-92	
ATC-600 and ATC-800 Controller Replacement Kits	V2-T5-93	

Controller Replacement Guide

Product Description

Automatic Transfer Switch Controller Replacement

Eaton automatic transfer switches use several different controller types. These automatic transfer controllers (ATCs) may be ordered as replacement for current manufacturer's existing automatic transfer switches. If vintage analog controller or controller parts are needed, then a separate renewal part data list needs to be referenced. The intent of this section is to address current controllers as listed in the table below.

It is important to note that the same controller type can be used on different switch types and the factory programmed firmware/ options will vary depending on the switch type. Thus it is very important to know the original switch type in order to select the correct controller replacement kit. If there is a question on which kit to select, then providing the factory with the original general order number and/or the 15 -character catalog number will eliminate any doubts regarding the correct kit selection.

Automatic Transfer Controllers

Controller Type	Order via Style Number Only	Order via Replacement Kit Style Number and Feature List ${ }^{1}$
ATC-100	See ATC-100 Replacement Kits table on the right	
ATC-300	Superseded by ATC-300+	
ATC-300+	See ATC-300 Replacement Kits, Page V2-T5-92	
ATC-600	See ATC-600/800 Replacement Kits, Page V2-T5-93	
ATC-800	See ATC-600/800 Replacement Kits, Page V2-T5-93	
ATC-900	ATC-900 Controller Replacement Guide, Page V2-T5-95	

ATC-100 Controller Replacement Kits

The ATC-100 controller is primarily used on residential and light commercial applications up to 400 A . This controller may be used with either contactor-based or molded case switch designs. The ATC-100 is only used on open transition type transfers. Replacement kits are ordered by style number (see table below).

ATC-100

ATC-100 Replacement Kits

Transfer Switch Type	Controller Type	Replacement Style Number
Power Frame-Based Design	-	-
ATC-100 controller is not available	ATC-100	$\mathbf{8 1 6 0 A 0 0 G 2 3}$
Molded Case-Based Design		
Open transition	ATC-100	$\mathbf{8 1 6 0 A 0 0 G 2 4}$
Contactor-Based Design	-	-
2-position open transition	-	-
2-position closed transition	-	-
3-position open transition		
3-position closed transition		
Note		
(1) Feature list required upon order entry.		

Automatic Transfer Controllers

ATC-300 Controller Replacement Kits

The ATC-300 controller has been in use for many years and was applied on molded case switch units up to 1000 A and contactor-based automatic transfer switches up to 1200 A. In 2012, the ATC-300 was replaced by the ATC-300+ controller. An ATC$300+$ replacement kit is used for replacement of older ATC-300s. When ordering the replacement kit, it is very important to identify that the existing application is either a molded case switch design or a contactor 2-position or 3 -position design.

The ATC-300+ has two features-Emergency Inhibit and Manual Retransfer-that
were not available on the ATC-300. If these features were not previously supplied with the ATC-300, then the end user does not have to use these additional features. In addition, the ATC-300+ includes Modbus RTU communication.

The ATC-300 and ATC-300+ have identical size and mounting dimensions. The J8 pin is now an 8-pin connector versus a 4 -pin connector on the legacy ATC-300. J8 pins 5-6 and $6-8$ are the connections for Emergency Inhibit and Manual Retransfer. The replacement kit includes the 8 -pin connector.

ATC-300+ Controller Replacement Kits

The ATC-300+ controller was first used in 2012 for molded case switch and open transition contactor-based (2-position and 3-position) designs. It is also used as the replacement kit for legacy ATC-300 controllers. It is critical to verify the application that needs a replacement kit. The ATC$300+$ is NOT used on closed transition designs.
The ATC-300+ controller will ship from the factory with the lockout feature enabled. If not required, then a jumper wire should be installed at the lockout input.

The controllers have a style number (typically 6D32360Gxx) printed on the rear. This style number is for factory use only and will NOT identify which controller kit is needed.

If there is trouble identifying the correct controller type, pressing the Help button will provide a hardware/ firmware revision level, serial number and feature code that an Eaton factory representative can use for identification.

ATC-300/300+ Replacement Kits

Transfer Switch Type	Controller Type	Replacement Style Number ${ }^{(1)}$
Power Frame-Based Design		
ATC-300+ controller is not available	-	-
Molded Case-Based Design		
Open transition	ATC-300 +	8160A00G100 ${ }^{2}{ }^{2}$
Contactor-Based Design		
2-position open transition	ATC-300+	$\mathbf{8 1 6 0 A 0 0 G 1 0 4}$
3-position open transition	ATC-300+	$\mathbf{8 1 6 0 A 0 0 G 1 0 8}$

Examples: Replacement Kit Style Number Selection

Example 1-

Molded Case-Based Design
Review 5th and 6th character in the ATS 15-character catalog number.

- If the 5 th and 6 th character is FD, KD, LD, MD, NB, then select 816000 G 100
- Example:

ATV3KDA30300XSU implies 8160A00G 100

Example 2-

Contactor-Based Design

Review 5th and 6th character to determine if the ATS is a two-position or a threeposition, and then select replacement kit accordingly.

Note: C2 is two-position and C3 or C5 is a three-position.

- Example:

ATC3C2X30200XSU
implies 8160A00G104

- Example:

ATC3C3X30400XSU implies 8160A00G108

- Example:

ATC3C5X30600XSU implies 8160A00G108

Note: This style number will not identify the replacement kit. The ATS catalog number is required to identify the replacement kit. The 15-character catalog number is on the ATS nameplate located on interior door of the ATS.

ATC-300/300+ Connectors

Connector Designation	Replacement Style Number
J1 or J2 (4-pin)	1268C07H31
J7 (4-pin)	1268C07H31
J8 (8-pin)	67A2590H21
J4 (10-pin)	67A2590H28
J5 (14-pin)	67A2590H29

Notes

(1) The replacement style number 8160A00Gxx will include the printed circuit board style number (6 D 32360 Gxx) shown on back of the controller.
(2) Identify if lockout feature 16 is required.

ATC-600 and ATC-800 Controller Replacement Kits

The ATC-600 is used on molded case switch and power circuit breaker-based designs up to 1000 A . It is also used on open transition Magnum power switch and power circuit breaker designs up to 5000 A.

The ATC-800 has been used on closed transition Magnum power switch and power circuit breaker-based designs up to 5000 A. The ATC-800 is currently being used on open and closed transition contactor-based designs up to 1200 A.

Legacy automatic transfer switches may have used what is referred to as IQ Controllers. Controller replacements for those units can be ordered as ATC-600 for open transition and ATC-800 for closed transition.

In some cases, both the ATC-600 and ATC-800 controllers have been used on medium voltage transfer switches.

When ordering the replacement kit, always provide the original GO\# of the ATS to correctly identify the features supplied with the controller. This feature set will then be used to program the replacement controller.

See the table below for the replacement kit style numbers for automatic transfer switches with ATC-600 or ATC-800 controllers. Because each controller was specifically supplied with the standard features and any order-specific optional features, there is no practical way to create a replacement kit style number for each variation of the features supplied. Thus, when ordering the replacement kit 8160A00GXX, the job-specific controller features must be specified. Order-specific features need to be included with the order entry.

See Feature List Steps table on Page V2-T5-94 for identifying the features to be supplied on the order entry.

On the back of the ATC-800/600 controllers is a style number similar to a 2D7858GXX. This style number only identifies the basic control board that is included in the replacement kit per the table on this page. The replacement kit style number listed on this page must be used to order the replacement kit.

Transfer Switch Type	Controller Type	Replacement Style Number
Power Frame-Based Design		
Open transition	ATC-600	8160A00G03 ${ }^{1}$
Open transition	ATC-600	8160A00G41 ${ }^{2}$
Closed transition	ATC-800	8160A00G05 ${ }^{(1)}$
Closed transition	ATC-800	8160A00G42 ${ }^{2}$
Molded Case-Based Design		
Open transition	ATC-600	8160A00G03 ${ }^{1}$
Open transition	ATC-600	8160AO0G41 ${ }^{2}$
Contactor-Based Design		
2-position open transition	ATC-800	8160A00G43 ${ }^{2}$
2-position closed transition	ATC-800	8160A00G43 ${ }^{2}$
3-position open transition	ATC-800	8160A00G43 ${ }^{2}$
3 -position closed transition	ATC-800	8160A00G43 ${ }^{2}$
Type		Replacement Style Number
ATC-600/800 Connectors		
J4 19-pin		67A2590H25
J522-pin		67A2590H26
Source 14-pin		1268C07H31
Source 24 -pin		1268C07H31
Load 4-pin		1268C07H31
J7-pin		1268C07H31
Notes		
(1) Kit includes one J 4 (19-pin), one J 5 (22-pin), four 4-pin connectors (S1, S2, Load, J7 Power and pins.		

Transfer Switches

Automatic Transfer Controllers

Feature List

The replacement controller needs to match the features originally supplied. The easiest way to supply this list is to provide the original order number from the original shipment. The ATS product line maintains a database with the original feature list. The general order (GO) number is on the ATS nameplate located on the inside of the door. In addition, it is very helpful to also supply the $\mathbf{1 5}$-digit ATS catalog number that can be found on the ATS nameplate.

The existing controller also has a catalog number feature code that defines what features are included. Pressing the Help Lamp Test button will show this code on a scrolling display.
If this information is not supplied on order entry, then the order will be placed on manufacturing hold until the information is supplied.

Feature code example (3f-e3-31-032)

Press Help Lamp Test button to initiate the Display Screen Readout

Feature List Steps

Step	Action
A. 1	Identify replacement style number from table on Page V2-T5-93.
A. 2	Identify original general order (GO) number. (12)
A. 3	Order style number with GO information in the order notes. (3) If the original GO number is hard to identify or is unavailable, then one of the following steps below can be taken.
B. 1	Provide the 9-digit feature code from the ATC-800 or ATC-600 controller. Feature code is viewable from ATC-600 or ATC-800 readout screen by pressing the Help button. Controller must be able to be powered up to view this feature code. On older controllers, the feature code may be 7 or 8 characters. Feature code example (3f-e3-31-032).
C. 1	If the above information is not available, then provide a detailed listing of features to be supplied with the controller. The following questions must be answered.
	Switch Type
	Molded case switch
	Power switch, open transition
	Power switch, closed transition
	Contactor open transition, 2-position
	Contactor open transition, 3-position
	Contactor closed transition, 2-position
	Contactor closed transition, 2-position
	Medium voltage WLI or breaker
	Medium voltage open transition
	Medium voltage closed transition
	Features
	5C source $20-\mathrm{F}$ monitoring
	5E/G source $20-\mathrm{V}$ monitoring
	Bypass TDEN/TDNE
	10 preferred source
	16 overcurrent trip
	23 plant exerciser
	Source $10-\mathrm{V}$ monitoring
	26D go to emergency
	Source 1 U-F monitoring
	Source $10-\mathrm{F}$ monitoring
	29J manual retransfer
	32A/B delayed transition
	32A TDN time delay neutral
	32 B time delay load voltage
	32C in-phase/TDNLV
	32 Din -phase/TDN
	35 pretransfer signal
	36 emergency inhibit
	37 service entrance
	45 remote sequencing
	46 PT ratio
	47C closed/in-phase transition
	47D closed transition only
	47E closed/in-phase/TDN
	47F closed/TDNLV

Notes

(1) Not replacement order number
(2) If ATS is mounted in Eaton motor control center or Eaton switchboard, the ATS order number must be supplied, not the overall gear General Order number. This ATS order number is located on the ATS label.
(3) If the original GO number is not supplied on order entry, then the order will be placed on manufacturing hold until the feature list is supplied.

ATC-900 Controller Replacement Guide

The ATC-900 controller is used on any of Eaton's automatic transfer switches. It can be used on contactorbased, molded case switchbased, and Magnum power switch-based designs. In addition, the ATC-900 is used on either open or closed transition type switches. The ATC-900 controller is provided as a replacement controller for existing designs. The selection guide below provides the different style number replacement kits.

ATC-900 Replacement Kit Selector Table

Switch Type	Number of Positions	Transition	Style Number Kit
Contactor-based	3	Open	8160A90G01
Contactor-based	2	Open	8160A90G07
Contactor-based	3	Closed	8160A90G13
Bypass contactor-based	3	Open	8160A90G19
Bypass contactor-based	3	Closed	8160A90G25
Molded case-based	3	Open	8160A90G31
Power frame-based	3	Open	8160A90G37
Power frame-based	3	Closed	8160A90G43
In addition, the A controller can be retrofit and upgra automatic transfe using either an A ATC-800 controll	0 to isting tches 0 or an	Refer to the controller field upgrade selection below. The upgrade kit includes the ATC-900 controller and the wire harness adapter kit.	
Retrofit/Upgrade Selector Kit for ATC-600 or ATC-800			
Switch Type			Style Number Kit
Contactor-based			8160A91G01
Molded case-based			8160A91G01
Power frame-based			8160A91G01
Bypass contactor-based			8160A91G04

ATC-900 (Top Left and Right Side Views)

ATC-900 Mating Connectors (Plugs)

Connector Designation	Number of Pins	Connector Part Number
J1	3	1268C07H41
J2	3	1268C07H41
J3	3	1268C07H41
J4	19	67A2590H25
J5	3	66A8190H01
J6	12	67A2590H32
J7	4	1268C07H31
J8	USB	M22-USB-SA
J9	8	66A8190H04
J11	4	66A8190H02
J12	4	66A8190H02
J13	4	66A8190H02
J14	n/a	From DCT Module
J15	6	66A8190H03
DCT Module		
J18	2	8160A18G98
I/O Module		
J1 120 Vac Power	4	1268C07H31
J2 Inputs and GND	10	67A2590H28
J3 Communications	4	66A8190H02
J4 Outputs Form C	12	67A2590H32

Note

The connectors to the ATC- 900 can be ordered separately; however, connector kit
style number 8160A92G01 can be ordered that includes connectors for $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~J} 7$,
J4, J6, J9, J11, J12 and J15.

HMi Remote Annunciator Controller

HMi Remote Annunciator Controller

Product Description

Eaton's HMi Remote Annunciator Controller (RAC) series provides users with the ability to remotely monitor and control multiple transfer switches from one intuitive, touch screen user interface.

Remote Management, Enhanced Safety

Tightening arc flash regulations and requirements for personal protective equipment are driving more and more end users toward the use of remote monitoring and control devices. Eaton's HMi Remote Annunciator Controller offers a simple and cost-effective means of providing transfer switch monitoring and control. Designed to meet today's most common specifications, including the City of Chicago Electrical Code, the HMiRAC communicates with Eaton's automatic transfer switch controller via serial Modbus or Ethernet (with Gateway device).

One Product, Multiple Advantages

The HMi RAC has a multiview option that allows for remote management of multiple transfer switches from an intuitive touch screen interface where users can:

- View the status of up to eight transfer switches on a single overview screen
- View and program transfer switch controller set points, control inputs and relay outputs
- Start and stop a generator engine test
- Initiate a transfer to the alternate source
- Bypass a time delay countdown
- Initiate a manual retransfer
- View and silence alarms
- Perform basic troubleshooting
- Analyze metering and trend data of source and load
- Monitor source synchronization during inphase or closed transition

Contents

Description
HMi Remote Annunciator Controller
Technical Data and Specifications V2-T5-97
Wiring Diagrams . V2-T5-98
Dimensions....................................... . . V2-T5-99

Design Highlights

- Utilizes Eaton's HMi (human-machine interface) series
- Display type: 7-inch TFT, 800×600, LED backlight
- Touch screen
- NEMA 4X/IP65
- 24 Vdc operating voltage (AC power supply optional)
- 85 dB multi-tone-frequency alarm buzzer
- Operating temperature: $32-122^{\circ} \mathrm{F}\left(0-50^{\circ} \mathrm{C}\right)$
- Storage temperature: -4 to $+140^{\circ} \mathrm{F}\left(-20\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
- $10 \% \sim 90 \%$ RH [$0 \sim 40 \mathrm{C}]$, 10% ~ 55\% RH [41~50C]
- 3 V lithium battery backup (CR2032 x 1)
- Serial interconnect module (included)

Features and Benefits

- Source and load metering of voltage, current, frequency, power, power factor, voltage unbalance
- Mimic bus graphic indicating status of source available, preferred and connection
- Source health indication
- Date and time stamped event and alarm history
- Programmable transfer switch designations
- Password protection
- Serial (Modbus RTU) and Ethernet (Modbus TCP/IP) communication
- Compatible with Eaton's ATC-900 and ATC-300 + (1) automatic transfer switch controllers

Standards and Certifications

- CE and UL safety approval

Note

(1) A reduced set of features are available when managing an ATC-300+ controller. Please consult the applicable HMi RAC Instruction Booklet (IB) for details.

Technical Data and Specifications

ATS Controller View Screen

- Provides status indication of a single ATS including limited control functionality
- Time delay countdown
- Source available, preferred and connected indication
- Metering and health vitals for Source 1, Source 2 and Load
- Manual controls for Go To Emergency, Bypass Timers, Start Engine Test and Manual Retransfer
- System setup
- Event history
- Alarm status
- Real-time trend data graphic for Source 1, Source 2 and Load
- Source synchronization status
- Mimic bus diagram
- Silence audible alarm
- Not in Automatic, Go To Emergency and Emergency Inhibit status indication
- Return to overview screen

ATS Overview Screen

- Abbreviated status indication for up to eight transfer switches
- Single touch provides quick and easy access to controller view screen for a single ATS

Remote Set Point Editing

- Password protected editing of transfer switch controller set points
- System parameters
- Time delays
- Dropouts and pickups
- Engine test and exerciser
- Programmable I/O

ATS Controller View Screen

Event History Screen

Event messages:

- Preferred Source Avail.
- Overvoltage
- Undervoltage
- Overfrequency
- Underfrequency
- Plant Exerciser
- Engine Test
- Remote Engine Test
- Voltage Unbalance
- Phase Reversal
- Go to Emergency
- Monitor Mode
- More available w/ATC-900

Alarm messages:

- In Lockout
- Engine Test Aborted
- Failed to Sync (Freq.)
- Failed to Sync (Phase)
- S1 Mech Fault
- S2 Mech Fault
- More available w/ATC-900

Manual Controls

- Start Engine Test:

Password protected control to start and abort an engine test. The engine test will run according to the controller-programmed set points (with or without load)

- Bypass Timers: Provides ability to override programmed time delays
- Go To Emergency: Password protected control to initiate a transfer to the alternate source. Failsafe returns ATS to the normal source if the alternate source fails
- Manual Retransfer: Allows operator to manually initiate a retransfer from the alternate source to the normal source

Source Health

- Voltage, frequency, phase loss and voltage unbalance are compared to programmed set points and provide real-time status indication of "source health"
- Bar graphs dynamically change color when source is not within programmed set point tolerances
- Trend icon provides singletouch access to source metering waveform data

Wiring Diagrams

Serial Diagram

Ethernet Diagram

Dimensions

Approximate Dimensions in Inches (mm)
HMi RAC Dimensions
Quick and easy panel-mount installation using four fasteners (included). For panel 5 mm thick or less.

AC Power Supply (Optional)

- Can be used when external 24 Vdc is not available to power HMi RAC
- 100-240 Vac, $50 / 60 \mathrm{~Hz}$ input
- DIN rail mount

HMi RAC Enclosure (Optional)

- ANSI 61 grey finish
- Keyhole slots in the flat cover permit removal without extracting screws
- Grounding provision
- Rear mounting holes and knockout provisions on sides
- UL 50, Type 1

Contents

Contactor-Based-Automatic Transfer Switch Features

Feature	Description	Open Transition									
							ATC			NTC	
Number		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Timers											
1	Time delay normal to emergency (TDNE) fixed 2 or 15 seconds	S	S	-	-	-	-	-	-	-	-
1A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
1B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
2	Time delay engine start (TDES) fixed 3 seconds	S	S	-	-	-	-	-	-	-	-
2A	Adjustable 0-120 seconds	-	-	S	S	S	S	S	S	-	-
3	Time delay emergency to normal (TDEN) fixed 5 minutes	S	S	-	-	-	-	-	-	-	-
3A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
3B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
4	Time delay engine cooldown (TDEC) fixed 5 minutes	S	S	-	-	-	-	-	-	-	-
4A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
4B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
Emergency (S2) Source Sensing											
5 H	Phase reversal protection	-	-	S	S	S	S	S	S	-	-
5J	All phase undervoltage/underfrequency	S	S	S	S	S	S	S	S	-	-
5 K	All phase overvoltage/overfrequency	-	-	S	S	S	S	S	S	-	-
5 L	All phase voltage unbalance	-	-	S	S	S	S	S	S	-	-
5M	All phase voltage phase loss	-	-	-	-	-	S	S	S	-	-
5 N	All phase overfrequency	-	-	-	-	-	S	S	S	-	-
System or Engine Test											
6B	Engine test pushbutton	S	S	S	S	S	S	S	S	-	-
6 C	Remote engine test input	-	-	-	-	-	C	C	C	-	-
6D	Maintained 2-position test switch	-	-	-	-	-	0	0	0	-	-
6 H	Maintained 4-position test switch	-	-	-	-	-	0	0	0	-	-
7	Time delay emergency fail (TDEF) fixed 6 seconds	S	S	-	-	-	-	-	-	-	-
7A	Adjustable 0-6 seconds	-	-	S	S	S	S	S	S	-	-
Pushbutton Bypass											
8C	Bypass TDEN	-	-	S	S	S	S	S	S	-	-
8D	Bypass TDNE	-	-	S	S	S	S	S	S	-	-
8 E	Bypass TDNE/TDEN (input)	-	-	-	-	-	C	C	C	-	-
Maintenance Selector Switch											
9 B	Electrical operator isolator switch	-	-	0	0	0	0	0	0	-	-

S $=$ Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Contactor-Based—Automatic Transfer Switch Features, continued

Feature	Description	Open Transition									
		RLC1	ATC1	ATC			ATC			NT	
Number		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Preferred Source Selector											
	Preferred source selector (programmed)	-	-	-	-	-	S	S	S	-	-
10A	Preferred source selector input	-	-	-	-	-	C	C	C	-	-
10C	Preferred source selector with selector switch	-	-	-	-	-	0	0	0	-	-
10B	Utility to utility or utility to generator	-	-	-	-	-	S	S	S	-	-
10D	Generator to generator	-	-	-	-	-	S	S	S	-	-
Indicating Lights/LEDs											
12 C	Normal (S1) source connected	S	S	S	S	S	S	S	S	S	S
12 D	Emergency (S2) source connected	S	S	S	S	S	S	S	S	S	S
12G	Normal (S1) source available	S	S	S	S	S	S	S	S	S	S
12 H	Emergency (S2) source available	S	S	S	S	S	S	S	S	S	S
12L	Normal (S1) source tripped (requires feature 16)	-	-	-	-	-	-	0	0	-	-
12M	Emergency (S2) source tripped (requires feature 16)	-	-	-	-	-	-	0	0	-	-
Source Available Contacts											
14 C	Normal (S1) source available 4 Form C	-	-	0	0	0	0	0	0	0	0
14 D	Emergency (S2) source available 4 Form C	-	-	0	0	0	0	0	0	0	0
14E	Normal (S1) source available 1 Form C	-	-	-	-	-	S	S	S	-	-
14 F	Emergency (S2) source available 1 Form C	-	-	-	-	-	S	S	S	-	-
14G	Normal (S1) source available 2 Form C	-	S	S	S	S	0	0	0	S	S
14 H	Emergency (S2) source available 2 Form C	-	S	S	S	S	0	0	0	S	S

Position Contacts

15E	Normal (S1) source position 1 Form C	-	S	S	S	S	S	S	S	S	S
15F	Emergency (S2) source position 1 Form C	-	S	S	S	S	S	S	S	S	S
15G	Normal (S1) source position 3 Form C	-	0	0	0	0	0	0	0	0	0
15 H	Emergency (S2) source position 3 Form C	-	0	0	0	0	0	0	0	0	0
15R	Normal (S1) source position 1 Form C (relay OUTPUT)	-	-	-	-	-	C	C	C	-	-
15 S	Emergency (S2) source position 1 Form C (relay OUTPUT)	-	-	-	-	-	C	C	C	-	-
Integral Overcurrent Protection											
16 N	Normal (S1) switch only	-	-	-	-	-	-	-	-	-	-
16 E	Emergency (S2) switch only	-	-	-	-	-	-	-	-	-	-
16B	Normal (S1) and emergency (S2) switches	-	-	-	-	-	-	-	-	-	-
16 S	Service equipment/overcurrent protection normal (S1) and emergency (S2)	0	-	-	-	-	-	-	-	-	-

Breaker with O/C Trip											
17N	Normal (S1) Breaker Only with 100\% load rating	-	-	-	0	0	0	0	0	0	0

Metering
(Specify normal (S1), emergency (S2) or load side for 18A thru E)

18	Integrated load metering (DCT module)	-	-	-	-	-	0	0	0	-	-
18A	$10250 / 260$	-	0	0	0	0	0	0	0	0	0
18B	PX4000/6000/8000	-	-	-	-	-	-	-	-	-	-
18D	IC 130/140/150	-	0	0	0	0	0	0	0	0	0
18 E	PXM2250/2260/2270	-	0	0	0	0	0	0	0	0	0
18J	Integrated metering (DCT module-load side only)	-	-	-	-	-	0	0	0	-	-
21A	Non-standard terminals	-	-	-	-	-	-	-	-	-	-
22	Ground bus	-	-	S	S	S	S	S	S	S	S
22 C	Special ground bar-contact factory	-	-	-	-	-	-	-	-	-	-
22D	16 conductor ground bus 500 or 750 kcmil	-	-	-	-	-	-	-	0	-	-
Plant Exerciser											
23A	Selectable-disabled/7-, 14-, 28-day interval, fixed 15 minutes load/no load, with fail-safe	S	S	-	-	-	-	-	-	-	-
23K	Selectable-disabled 7-, 14-, 28-day interval, 0-600 minutes load/no load, with fail-safe	-	-	S	S	S	-	-	-	-	-
23L	24 -hour, 7-day, 365-day programmable plant exerciser	-	-	0	0	0	-	-	-	-	-
23M	Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe	-	-	-	-	-	S	S	S	-	-

[^4]Contactor-Based-Automatic Transfer Switch Features, continued

Feature	Description	Open Transition									
		RLC1					ATC			NTC	
Number		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Normal (S1) Source Sensing											
26D	Go to emergency (S2) input	-	-	S	S	S	C	C	C	-	-
26E	Go to emergency (S2) input with selector switch (1)	-	-	-	-	-	-	0	0	-	-
26 H	Phase reversal protection	-	-	S	S	S	0	S	S	-	-
26 J	All phase undervoltage/underfrequency	-	-	S	S	S	S	S	S	-	-
26K	All phase overvoltage/overfrequency	-	-	S	S	S	S	S	S	-	-
26L	All phase voltage unbalance	-	-	S	S	S	0	S	S	-	-
26M	All phase voltage phase loss	-	-	-	-	-	S	S	S	-	-
26P	All phase undervoltage	S	S	-	-	-	-	-	-	-	-
Alternative Transfer Modes of Operation											
29G	Selector switch for auto or non-auto operation (1)	-	-	0	0	0	0	0	0	-	-
29.	Manual (pushbutton) transfer E to N ; automatic N to E (1)	-	-	0	0	0	0	0	0	-	-
29L	Manual retransfer on/off input	-	-	-	-	-	C	C	C	-	-
29M	Manual retransfer on/off input with selector switch (1)	-	-	-	-	-	0	0	0	-	-
29K	Manual retransfer input	-	-	-	-	-	C	C	C	-	-
Open Transfer Operation Modes											
32A	Time delay neutral adjustable 0-120 seconds (delayed transition)	-	-	-	S	-	-	C	C	-	-
32B	Load voltage decay adjustable 2-30\% nominal voltage	-	-	-	-	-	-	C	C	-	-
32 C	In-phase transition defaults to load voltage decay	-	-	-	-	-	-	C	C	-	-
32 D	In-phase transition defaults to time delay neutral	-	-	-	-	S	-	-	-	-	-
32E	Delay transition timer adjustable 3-60 seconds	-	-	-	-	-	-	-	-	-	-
32F	In-phase transition	S	S	S	-	-	S	-	-	-	-
32G	Time delay neutral fixed 0 or 2 seconds (delayed transition)	-	-	-	-	-	-	-	-	-	-
Logic Extender Cable (Open Enclosures Only)											
34A	48 inches (1219 mm)	-	-	-	-	-	-	-	-	-	-
34C	96 inches (2438 mm)	-	0	0	0	0	-	-	-	0	0
34E	144 inches (3658 mm)	-	-	-	-	-	-	-	-	-	-
34F	100 inches (2540 mm) (fixed mount only)	-	-	-	-	-	-	-	-	-	-
35A	Pre-transfer signal contacts 1 Form C	-	-	S	S	S	C	C	C	-	-
35B	Pre-/post-transfer signal	-	-	-	-	-	C	C	C	-	-
36	Load shed from emergency (S2 inhibit)	-	-	-	S	S	C	C	C	-	-
36A	Load shed-S2 inhibit with keyed switch (INPUT)	-	-	-	-	-	0	0	0	-	-
	Go to "isolated" position (not SE rated)	-	-	-	-	-	C	C	C	-	-

Suitable for Use as Service Equipment Requires 16B, N or S

37 A	Without ground fault protection	-	-	0	0	0	0	0	0	0	0	0
37 B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	-	0	0	0	0	0	0	0	0		

Stainless Steel Device Covers										
38A SS cover for device plate or SE disconnect	-	-	0	0	0	0	0	0	0	0
38B SS cover for controller	-	0	0	0	0	0	0	0	-	-
Space Heater with Thermostat										
41A $\quad 100$ watts	-	0	0	0	0	0	0	0	0	0
$41 \mathrm{E} \quad 375$ watts	-	-	-	-	-	-	-	-	-	-
42 IBC/CBC seismic qualified	S	S	S	S	S	S	S	S	S	S
Load Management Contacts										
45A-K Load sequencing contacts (1)	-	-	-	-	-	C	C	-	-	-
45L Selective load shed (assignable to multiple out put contacts)	-	-	-	-	-	C	C	C	-	-

[^5]
Note

(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Standard and Optional Features

Feature	Description	Open Transition									
				AT			ATC			NT	
Number		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Communications											
48D	PXG400 gateway (includes Modbus)	-	-	0	0	0	0	0	0	-	-
48F	Modbus-MPONI module (PONI not required with ATC-300+)	-	-	0	0	0	-	-	-	-	-
48F	Modbus communication-no PONI required	-	-	S	S	S	S	S	S	-	-
48G	Modbus TCP/IP gateway	-	-	-	-	-	0	0	0	-	-
48P	Power supply for remote annunciator	-	-	0	0	0	0	0	0	-	-
48RAC	Remote annunciator with control (includes Modbus)	-	-	0	0	0	0	0	0	-	-
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	-	0	0	0	-	-	-	-	-
48 U	USB port	-	-	-	-	-	S	S	S	-	-
49A	Sensing isolation transformer Magnum	-	-	-	-	-	0	0	0	-	-
49B	Sensing isolation transformer	-	-	0	0	0	0	0	0	-	-
49C	Multi-tap voltage transformer (non AG only)	-	S	S	S	S	S	S	S	S	S
49C	Multi-tap voltage transformer (option only on fixed)	-	-	-	-	-	-	-	-	-	-
TVSS up to 480 V (Connected to Normal)											
51D1	50 kA -CVX	-	-	0	0	0	0	0	0	0	0
51F1	100 kA -CVX	-	-	0	0	0	0	0	0	0	0

Surge Protection Device with 12 ft Cable (on Normal)

51 S1	50 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51 S 2	80 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
$51 \mathrm{S3}$	100 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51 S4	120 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51S5	160 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51S6	200 kA -SPD (1)	-	-	-	-	-	-	-	-		-
5157	250 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
5158	300 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
5159	400 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-	-	-	-	-
54B	Upgrade to 316 stainless steel	-	-	0	0	0	0	0	0	0	0
60	Control power transformer (240/120 V single-phase and 208 V only)	-	0	0	-	-	-	-	-	-	-
61A	UPS device	-	-	-	-	-	-	-	-	-	-
61B	UPS 120 Vac terminal block input	-	-	-	-	-	-	-	-	-	-
80A	Emergency (S2) inhibit contact	-	-	-	0	0	C	C	C	-	-

Monitoring Outputs

81A	General alarm indication contact	-	-	-	-	-	C	C	C	-	-
81B	ATS not in automatic	-	-	-	-	-	C	C	C	-	-
81C	ATS in test	-	-	-	-	-	C	C	C	-	-
81D	Engine test aborted	-	-	-	-	-	C	C	C	-	-
81 E	Cooldown in process	-	-	-	-	-	C	C	C	-	-
81F	Engine start contact status	-	-	-	-	-	C	C	C	-	-
81G	Emergency inhibit on	-	-	-	-	-	C	C	C	-	-
81GL	Emergency inhibit on with white indicating light (2)	-	-	-	-	-	0	0	0	-	-
81H	ATS on bypass	-	-	-	-	-	C	C	C	-	-
Inputs											
81J	Lockout	-	-	-	-	-	C	C	C	-	-
81K	Monitor mode	-	-	-	-	-	C	C	C	-	-
81L	Remote load test	-	-	-	-	-	C	C	C	-	-
Three Source ATS Control (Master/Slave)											
90A	Master control output	-	-	-	-	-	C	C	C	-	-
90B	Slave input	-	-	-	-	-	C	C	C	-	-

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$C: B$ and surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Contactor-Based-Automatic Transfer Switch Features, continued

[^6]Contactor-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition			Closed Transition			
		$\begin{aligned} & \text { BIC3 } \\ & \text { (up to } 400 \mathrm{~A} \text {) } \end{aligned}$	$\begin{aligned} & \text { BIC3 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { BIC9 } \\ & \text { (up to } 400 \mathrm{~A} \text {) } \end{aligned}$	$\begin{aligned} & \text { BIC9 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	CBC9 (up to 400 A)	$\begin{aligned} & \text { CBC9 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { CTC9 } \\ & \text { C3 } \end{aligned}$
Position Contacts								
15E	Normal (S1) source position 1 Form C	S	S	S	S	S	S	S
15 F	Emergency (S2) source position 1 Form C	S	S	S	S	S	S	S
15G	Normal (S1) source position 3 Form C	0	0	0	0	0	0	0
15 H	Emergency (S2) source position 3 Form C	0	0	0	0	0	0	0
15R	Normal (S1) source position 1 Form C (relay OUTPUT)	-	-	C	C	C	C	C
15S	Emergency (S2) source position 1 Form C (relay OUTPUT)	-	-	C	C	C	C	C
Integral Overcurrent Protection								
16N	Normal (S1) switch only	-	-	-	-	-	-	-
16E	Emergency (S2) switch only	-	-	-	-	-	-	-
16B	Normal (S1) and emergency (S2) switches	-	-	-	-	-	-	-
16 S	Service equipment/overcurrent protection normal (S1) and emergency (S2)	-	-	-	-	-	-	-

Metering
(Specify normal (S1), emergency (S2) or load side for 18A thru E)

18	Integrated load metering (DCT module)	-	-	0	0	0	0	0
18A	$10250 / 260$	0	0	0	0	0	0	0
18B	PX4000/6000/8000	-	0	-	-	-	-	-
18D	IO 130/140/150	0	0	0	0	0	0	0
18E	PXM2250/2260/2270	0	0	0	0	0	0	0
18 J	Integrated metering (DCT module-load side only)	-	-	0	0	0	0	0
20A	Rear bus connections	-	-	-	-	-	-	-
21A	Non-standard terminals (optional in IES for centers)	-	-	-	-	-	-	-
22	Ground bus	S	S	-	-	-	-	-
22 C	Special ground bar-contact factory	-	-	-	-	-	-	-
22 D	16 conductor ground bus 500 or 750 kcmil	0	0	0	0	0	-	-

Plant Exerciser

23A	Selectable-disabled 7-, 14-, 28 -day interval, fixed 15 minutes load/no load, with fail-safe	-	-	-	-	-	-	-
23K	Selectable-disabled 7-, 14-, 28-day interval, 0-600 minutes load/no load, with fail-safe	S	S	-	-	-	-	-
23L	24 -hour, 7-day, 365-day programmable plant exerciser	0	0	-	-	-	-	-
23M	Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe	-	-	S	S	S	S	S

Normal (S1) Source Sensing								
26D	Go to emergency (S2) input	S	S	C	C	C	C	C
26E	Go to emergency (S2) input with selector switch (1)	-	-	0	0	0	0	0
26H	Phase reversal protection	S	S	S	S	S	S	S
26 J	All phase undervoltage/underfrequency	S	S	S	S	S	S	S
26K	All phase overvoltage/overfrequency	S	S	S	S	S	S	S
26 L	All phase voltage unbalance and phase loss	-	-	0	0	0	0	0
26 L	All phase voltage unbalance	S	S	S	S	S	S	S
Alternative Transfer Modes of Operation								
29D	Dual ATS bypass	S	S	S	S	S	S	-
29G	Selector switch for auto or non-auto operation (1)	0	0	0	0	0	0	0
29」	Manual (pushbutton) transfer E to N ; automatic N to E (1)	0	0	0	0	0	0	0
29 L	Manual retransfer on/off input	-	-	C	C	C	C	C
29M	Manual retransfer on/off input with selector switch (1)	-	-	0	0	0	0	0
29K	Manual retransfer input	-	-	C	C	C	C	C

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Note
(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Contactor-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition		$\begin{aligned} & \text { BIC9 } \\ & \text { (up to } 400 \mathrm{~A} \text {) } \end{aligned}$	$\begin{aligned} & \text { BIC9 } \\ & \text { (600-1600 A) } \end{aligned}$	Closed Transition		
		BIC3 (up to 400 A)	$\begin{aligned} & \text { BIC3 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$			$\begin{aligned} & \text { CBC9 } \\ & \text { (up to } 400 \mathrm{~A} \text {) } \end{aligned}$	$\begin{aligned} & \text { CBC9 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { CTC9 } \\ & \text { C3 } \end{aligned}$
Open Transfer Operation Modes								
32 A	Time delay neutral adjustable 0-120 seconds (delayed transition)	S	S	C	C	-	-	-
32B	Load voltage decay adjustable 2-30\% nominal voltage	-	-	C	C	-	-	-
32 C	In-phase transition defaults to load voltage decay	-	-	-	-	-	-	-
32 D	In-phase transition defaults to time delay neutral	-	-	-	-	-	-	-
32 E	Delay transition timer adjustable 3-60 seconds	-	-	-	-	-	-	-
32 F	In-phase transition	-	-	-	-	-	-	-
32 G	Time delay neutral fixed 0 or 2 seconds (delayed transition)	-	-	-	-	-	-	-
Load Control								
35A	Pre-transfer signal contacts 1 Form C	S	S	C	C	C	C	C
35B	Pre-/post-transfer signal	-	-	C	C	C	C	C
36	Load shed from emergency (S2 inhibit)	S	S	C	C	C	C	C
36A	Load shed-S2 inhibit with keyed switch (INPUT)	-	-	0	0	0	0	0
37	Go to "isolated" position (not SE rated)	-	-	C	C	C	C	C
Suitable for Use as Service Equipment Requires 16B, N or S								
37A	Without ground fault protection	-	-	-	-	-	-	-
37B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	-	-	-	-	-	-	-
Stainless Steel Device Covers								
38A	SS cover for device plate or SE disconnect	0	0	0	0	0	0	0
38B	SS cover for controller	0	0	0	0	0	0	0
Space Heater with Thermostat								
41A	100 watts	0	0	0	0	0	0	0
41 E	375 watts	-	-	-	0	-	0	-
	IBC/CBC seismic qualified	S	S	S	S	S	S	S
Load Management Contacts								
45A-K	Load sequencing contacts (1)	-	-	C	C	C	C	C
45L	Selective load shed (assignable to multiple out put contacts)	-	-	C	C	C	C	C

Closed Transition Operational Modes (User Must Specify)

47C	Closed/in-phase transition default to load voltage decay	-	-	-	-	-	-	-
47D	Closed transition	-	-	-	-	C	C	C
47E	Closed/in-phase transition default to time delay neutral	-	-	-	-	-	-	-
47 F	Closed transition load voltage decay	-	-	-	-		C	C
47G	Closed transition time delay neutral	-	-	-	-	C	C	C
47H	Parallel limit timer	-	-	-	-	-	-	-

Communications

48A	INCOM-IPONI module	-	-	-	-	-	-	-
48D	PXG400 gateway (includes Modbus)	0	0	0	0	0	0	0
48F	Modbus-MPONI module (PONI not required with ATC-300+)	0	0	-	-	-	-	-
48F	Modbus communication-no PONI required	S	S	S	S	S	S	S
48G	Modbus TCP/IP gateway	0	0	0	0	0	0	0
48 P	Power supply for remote annunciator	0	0	0	0	0	0	0
48RAC	Remote annunciator with control (includes Modbus)	0	0	0	0	0	0	0
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	-	-	-	-	-	-
48R	Remote annunciator	-	-	S	S	S	S	S
48 U	USB port	-	-	-	-	-	-	-
49A	Sensing isolation transformer Magnum	-	-	0	0	0	0	0
49B	Sensing isolation transformer	-	-	0	0	0	0	0
49 C	Multi-tap voltage transformer (non AG only)	-	-	-	-	-	-	S
49 C	Multi-tap voltage transformer (option only on fixed)	S	S	S	S	S	S	-

[^7]Contactor-Based-Automatic Transfer Switch Features, continued

		Open Transition				Closed Transition		
Feature Number	Description	BIC3 (up to 400 A)	$\begin{aligned} & \text { BIC3 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	BIC9 (up to 400 A)	$\begin{aligned} & \text { BIC9 } \\ & (600-1600 \mathrm{~A}) \end{aligned}$	CBC9 (up to 400 A)	$\begin{aligned} & \text { CBC9 } \\ & \text { (600-1600 A) } \end{aligned}$	$\begin{aligned} & \text { CTC9 } \\ & \text { C3 } \end{aligned}$
TVSS up to 480 V (Connected to Normal)								
51D1	50 kA -CVX	0	-	0	-	0	-	0
$51 F 1$	100 kA -CVX	0	-	0	-	0	-	0
Surge Protection Device with $12 \mathrm{ft} \mathrm{Cable} \mathrm{(on} \mathrm{Normal)}$								
51S1	50 kA -SPD (1)	-	0	-	0	-	0	-
51 S 2	80 kA -SPD (1)	-	0	-	0	-	0	-
5153	100 kA -SPD (1)	-	0	-	0	-	0	-
51S4	120 kA -SPD (1)	-	0	-	0	-	0	-
5155	160 kA -SPD ${ }^{(1)}$	-	0	-	0	-	0	-
$51 \mathrm{S6}$	200 kA -SPD (1)	-	0	-	0	-	0	-
5157	250 kA -SPD (1)	-	-	-	-	-	-	-
5158	300 kA -SPD (1)	-	-	-	-	-	-	-
5159	400 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-	-
54A	Front access cabinet	-	-	-	-	-	-	-
54B	Upgrade to 316 stainless steel	0	0	0	0	0	0	-
59A	Silver-plated bus	S	S	-	S	-	S	-
59B	Tin-plated bus	0	0	-	-	-	-	-
61 A	UPS device	0	0	-	-	-	-	-
61B	UPS 120 Vac terminal block input	S	S	-	-	-	-	-
80A	Emergency (S2) inhibit contact	S	S	C	C	C	C	C
Monitoring Outputs								
81A	General alarm indication contact	-	-	C	C	C	C	C
81B	ATS not in automatic	-	-	C	C	C	C	C
81C	ATS in test	-	-	C	C	C	C	C
81D	Engine test aborted	-	-	C	C	C	C	C
81 E	Cooldown in process	-	-	C	C	C	C	C
81F	Engine start contact status	-	-	C	C	C	C	C
81G	Emergency inhibit on	-	-	C	C	C	C	C
81GL	Emergency inhibit on with white indicating light (2)	-	-	0	0	0	0	0
81H	ATS on bypass	-	-	C	C	C	C	C
Inputs								
81J	Lockout	-	-	C	C	C	C	C
81K	Monitor mode	-	-	C	C	C	C	C
81L	Remote load test	-	-	C	C	C	C	C
Three Source ATS Control (Master/Slave)								
90A	Master control output	-	-	C	C	C	C	C
90B	Slave input	-	-	C	C	C	C	C

S = Standard, $0=$ Optional, C = Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$C: B$ and surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Molded Case-Based-Automatic Transfer Switch Features

5

Feature Number	Description	Open Transition					Closed Transition MBHE
		ATH1 ATV1	ATH3 ATV3	ATH9 ATV9	NTHE NTVE	MTHX MTVX	
Timers							
1	Time delay normal to emergency (TDNE) fixed 2 or 15 seconds	S	-	-	-	-	-
1A	Adjustable 0-1800 seconds	-	S	-	-	-	-
1B	Adjustable 0-9999 minutes	-	-	S	-	-	-
2	Time delay engine start (TDES) fixed 3 seconds	S	-	-	-	-	-
2A	Adjustable 0-120 seconds	-	S	S	-	-	-
3	Time delay emergency to normal (TDEN) fixed 5 minutes	S	S	-	-	-	-
3 A	Adjustable 0-1800 seconds	-	-	-	-	-	-
3B	Adjustable 0-9999 minutes	-	-	S	-	-	-
4	Time delay engine cooldown (TDEC) fixed 5 minutes	S	-	-	-	-	-
4A	Adjustable 0-1800 seconds	-	S	-	-	-	-
4B	Adjustable 0-9999 minutes	-	-	S	-	-	-
Emergency (S2) Source Sensing							
5 H	Phase reversal protection	-	S	S	-	-	-
5 J	All phase undervoltage/underfrequency	S	S	S	-	-	-
5 K	All phase overvoltage/overfrequency	-	S	S	-	-	-
5 L	All phase voltage unbalance	-	-	0	-	-	-
5 L	All phase voltage phase loss	-	-	S	-	-	-
5N	All phase overfrequency	S	-	S	-	-	-
System or Engine Test							
6B	Engine test pushbutton	S	S	S	-	-	-
6 C	Remote engine test input	-	-	C	-	-	-
6D	Maintained 2-position test switch	-	-	0	-	-	-
6 H	Maintained 4-position test switch	-	-	0	-	-	-
	Time delay emergency fail (TDEF) fixed 6 seconds	S	-	-	-	-	-
7A	Adjustable 0-6 seconds	-	S	S	-	-	-
Pushbutton Bypass							
8C	Bypass TDEN	-	S	S	-	-	-
8D	Bypass TDNE	-	S	S	-	-	-
	Bypass TDNE/TDEN (input)	-	-	C	-	-	-
Maintenance Selector Switch							
9B	Electrical operator isolator switch	-	0	0	-	-	-
Preferred Source Selector							
	Preferred source selector (programmed)	-	-	S	-	-	-
10 A	Preferred source selector input	-	-	C	-	-	-
10 C	Preferred source selector with selector switch	-	-	0	-	-	-
10B	Utility to utility or utility to generator	-	-	S	-	-	-
10D	Generator to generator	-	-	S	-	-	-
Indicating Lights/LEDs							
12 C	Normal (S1) source connected	S	S	S	S	-	S
12 D	Emergency (S2) source connected	S	S	S	S	-	S
12G	Normal (S1) source available	S	S	S	S	-	-
12 H	Emergency (S2) source available	S	S	S	S	-	-
12L	Normal (S1) source tripped (requires feature 16)	-	0	0	0	-	-
12M	Emergency (S2) source tripped (requires feature 16)	-	0	0	0	-	-

Source Available Contacts							
14 C	Normal (S1) source available 4 Form C	-	0	0	0	-	-
14 D	Emergency (S2) source available 4 Form C	-	0	0	0	-	-
14 E	Normal (S1) source available 1 Form C	-	-	S	-	-	
14 F	Emergency (S2) source available 1 Form C	-	-	S	-	-	
14 G	Normal (S1) source available 2 Form C	S	S	0	-		
14 H	Emergency (S2) source available 2 Form C	S	S	0	-	-	

[^8]
Standard and Optional Features

Molded Case-Based-Automatic Transfer Switch Features, continued

		Open Transition			NTHE NTVE	$\begin{aligned} & \text { MTHX } \\ & \text { MTVX } \end{aligned}$	Closed Transition MBHE
Feature Number	Description	ATH1 ATV1	ATH3 ATV3	ATH9 ATV9			
Position Contacts							
15E	Normal (S1) source position 1 Form C	S	S	S	-	-	-
15 F	Emergency (S2) source position 1 Form C	S	S	S	-	-	-
15 G	Normal (S1) source position 3 Form C	0	0	0	-	-	-
15 H	Emergency (S2) source position 3 Form C	0	0	0	-	-	-
15R	Normal (S1) source position 1 Form C (relay OUTPUT)	-	-	C	-	-	-
15S	Emergency (S2) source position 1 Form C (relay OUTPUT)	-	-	C	-	-	-
Integral Overcurrent Protection							
16 N	Normal (S1) switch only	-	0	0	0	0	-
16 E	Emergency (S2) switch only	-	0	0	0	0	-
16B	Normal (S1) and emergency (S2) switches	-	0	0	0	0	-
Metering (Specify normal (S1), emergency (S2) or load side for 18A thru E)							
18	Integrated load metering (DCT module)	-	-	-	-	-	-
18A	$10250 / 260$	0	0	0	0	-	-
18B	PX4000/6000/8000	-	-	-	-	-	-
18D	IO 130/140/150	0	0	0	0	-	-
18E	PXM2250/2260/2270	0	0	0	0	-	-
18 J	Integrated metering (DCT module-load side only)	-	-	0	0	-	-
20A	Rear bus connections	-	0	0	0	0	-
21A	Non-standard terminals (optional in IES for centers)	0	0	0	0	0	0
22	Ground bus with provisions to attach to neutral	-	-	0	-	-	-
Plant Exerciser							
23A	Selectable—disabled 7-, 14-, 28-day interval, fixed 15 minutes load/no load, with fail-safe	S	-	-	-	-	-
23K	Selectable-disabled 7-, 14-, 28-day interval, 0-600 minutes load/no load, with fail-safe	-	S	-	-	-	-
23L	24-hour, 7-day, 365-day programmable plant exerciser	-	0	-	-	-	-
23M	Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe	-	-	S	-	-	-
Normal (S1) Source Sensing							
26D	Go to emergency (S2) input	-	S	C	-	-	-
26E	Go to emergency (S2) input with selector switch (1)	-	-	0	-	-	-
26H	Phase reversal protection	-	S	S	-	-	-
26 J	All phase undervoltage/underfrequency	-	S	S	-	-	-
26K	All phase overvoltage/overfrequency	-	S	S	-	-	-
26L	All phase voltage unbalance and phase loss	-	-	0	-	-	-
26L	All phase voltage unbalance	-	S	S	-	-	-
26M	Allows operation with generator with utility sensing	0	-	-	-	-	-
26P	(available only through a field installed kit) (not in IES)	S	-	-	-	-	-
Alternative Transfer Modes of Operation							
29G	Selector switch for auto or non-auto operation (1)	-	0	0	-	-	-
29.	Manual (pushbutton) transfer E to N ; automatic N to $\mathrm{E}^{(1)}$	-	0	0	-	-	-
29L	Manual retransfer on/off input	-	-	C	-	-	-
29M	Manual retransfer on/off input with selector switch (1)	-	-	0	-	-	-
29K	Manual retransfer input	-	-	C	-	-	-

[^9]
Note

(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user

Molded Case-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition					Closed Transition MBHE
		ATH1 ATV1	ATH3 ATV3	ATH9 ATV9	NTHE NTVE	MTHX MTVX	
Open Transfer Operation Modes							
32A	Time delay neutral adjustable 0-120 seconds (delayed transition)	-	S	C	-	-	-
32B	Load voltage decay adjustable 2-30\% nominal voltage	-	-	C	-	-	-
32 C	In-phase transition defaults to load voltage decay	-	-	-	-	-	-
32 D	In-phase transition defaults to time delay neutral	-	-	-	-	-	-
32E	Delay transition timer adjustable 3-60 seconds	-	-	-	S	-	-
32 F	In-phase transition	-	-	-	-	-	-
32G	Time delay neutral fixed 0 or 2 seconds (delayed transition)	S	-	-	-	-	-
Logic Extender Cable (Open Enclosures Only)							
34A	48 inches (1219 mm)	-	-	0	0	-	-
34C	96 inches (2438 mm)	-	-	0	0	-	-
34E	144 inches (3658 mm)	-	-	0	0	-	-
34F	100 inches (2540 mm) (fixed mount only)	-	-	-	-	-	-
35A	Pre-transfer signal contacts 1 Form C	-	S	C	-	-	-
35B	Pre-/post-transfer signal	-	-	C	-	-	-
36	Load shed from emergency (S2 inhibit)	-	0	C	-	-	-
36A	Load shed-S2 inhibit with keyed switch (INPUT)	-	-	0	-	-	-
	Go to "isolated" position (not SE rated)	-	-	C	-	-	-
Suitable for Use as Service Equipment Requires 16B, N or S							
37A	Without ground fault protection	-	0	0	0	-	-
37B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	-	0	0	0	-	-

Distribution Panel (For 240/120 V Only)							
39A	225 A with (2) 200 A feeders	-	0	-	-	-	-
39B	300 A with (3) 200 A feeders	-	0	-	-	-	-
39C	400 A with (4) 200 A feeders	-	0	-	-	-	-
Space Heater with Thermostat							
41A	100 watts	0	0	0	0	0	0
	IBC/CBC seismic qualified	S	S	S	S	S	S
Load Management Contacts							
45A-K	Load sequencing contacts (1)	-	-	C	-	-	-
45L	Selective load shed (assignable to multiple out put contacts)	-	-	C	-	-	-
Communications							
48D	PXG400 gateway (includes Modbus)	-	0	0	-	-	-
48 F	Modbus communication-no PONI required	-	-	S	-	-	-
48G	Modbus TCP/IP gateway	-	-	0	-	-	-
48P	Power supply for remote annunciator	-	0	0	-	-	-
48RAC	Remote annunciator with control (includes Modbus)	-	0	0	-	-	-
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	0	-	-	-	-
48 U	USB port	-	-	S	-	-	-
49B	Sensing isolation transformer	-	0	0	-	-	-
49 C	Multi-tap voltage transformer (1)	S	S	S	S	S	-
49 C	Multi-tap voltage transformer (option only on fixed)	-	-	-	-	-	-

[^10]
Note

(1) On dedicated voltage 240 V or 208 V , multi-tap transformer is not included as standard.

Molded Case-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition			NTHE NTVE	$\begin{aligned} & \text { MTHX } \\ & \text { MTVX } \end{aligned}$	Closed Transition MBHE
		ATH1 ATV1	ATH3 ATV3	ATH9 ATV9			
TVSS up to 480 V (Connected to Normal)							
51D1	50 kA -CVX	-	0	0	0	0	-
51 F 1	100 kA -CVX	-	0	0	0	0	-
Surge Protection Device with $12 \mathrm{ft} \mathrm{Cable} \mathrm{(on} \mathrm{Normal)}$							
51S1	50 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-
51S2	80 kA -SPD (1)	-	-	-	-	-	-
51S3	100 kA -SPD (1)	-	-	-	-	-	-
51S4	120 kA -SPD (1)	-	-	-	-	-	-
51S5	160 kA -SPD (1)	-	-	-	-	-	-
$51 \mathrm{S6}$	200 kA -SPD (1)	-	-	-	-	-	-
51 S	250 kA -SPD (1)	-	-	-	-	-	-
5158	300 kA -SPD (1)	-	-	-	-	-	-
5159	400 kA -SPD (1)	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-
54A	Front access cabinet	-	-	-	-	-	-
54B	Upgrade to 316 stainless steel	-	0	0	0	0	-
55B	Source swap (normal—bottom / emergency-top)	-	-	-	-	-	-
60	Control power transformer (240/120 V single-phase and 208 V only)	0	0	-	-	-	-
61A	UPS device	-	-	-	-	-	-
61 B	UPS 120 Vac terminal block input	-	-	-	-	-	-
80A	Emergency (S2) inhibit contact	-	0	C	-	-	-
Monitoring Outputs							
81A	General alarm indication contact	-	-	C	-	-	-
81B	ATS not in automatic	-	-	C	-	-	-
81C	ATS in test	-	-	C	-	-	-
81D	Engine test aborted	-	-	C	-	-	-
81 E	Cooldown in process	-	-	C	-	-	-
81F	Engine start contact status	-	-	C	-	-	-
81G	Emergency inhibit on	-	-	C	-	-	-
81GL	Emergency inhibit on with white indicating light (2)	-	-	0	-	-	-
81H	ATS on bypass	-	-	C	-	-	-
Inputs							
81J	Lockout	-	-	C	-	-	-
81K	Monitor mode	-	-	C	-	-	-
81L	Remote load test	-	-	C	-	-	-
Three Source ATS Control (Master/Slave)							
90A	Master control output	-	-	C	-	-	-
90B	Slave input	-	-	C	-	-	-

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$C: B$ and surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user

Power Frame-Based-Automatic Transfer Switch Features

Feature	Description	Open Transition			Closed Transition	
		ATV9	NTVE	BIV9	CTV9	CBV9
Number		MG	MG	MG	MG	MG
Timers						
1 B	Adjustable 0-9999 minutes	S	-	S	S	S
2 A	Adjustable 0-120 seconds	S	-	S	S	S
3 A	Adjustable 0-1800 seconds	-	-	-	-	-
3B	Adjustable 0-9999 minutes	S	-	S	S	S
4A	Adjustable 0-1800 seconds	-	-	-	-	-
4B	Adjustable 0-9999 minutes	S	-	S	S	S
Emergency (S2) Source Sensing						
5 H	Phase reversal protection	S	-	S	S	S
5 J	All phase undervoltage/underfrequency	S	-	S	S	S
5 K	All phase overvoltage/overfrequency	S	-	S	S	S
5 L	All phase voltage unbalance	0	-	0	0	0
5 L	All phase voltage phase loss	S	-	S	S	S
5 N	All phase overfrequency	S	-	S	S	S
System or Engine Test						
6B	Engine test pushbutton	S	-	S	S	S
6 C	Remote engine test input	C	-	C	C	C
6 D	Maintained 2-position test switch	0	-	0	0	0
6 H	Maintained 4-position test switch	0	-	0	0	0
	Adjustable 0-6 seconds	S	-	S	S	S
Pushbutton Bypass						
8 C	Bypass TDEN	S	-	S	S	S
8D	Bypass TDNE	S	-	S	S	S
8 E	Bypass TDNE/TDEN (input)	C	-	C	C	C
Maintenance Selector Switch						
9B	Electrical operator isolator switch	0	-	0	0	0
Preferred Source Selector						
	Preferred source selector (programmed)	S	-	S	S	S
10A	Preferred source selector input	C	-	C	C	C
10 C	Preferred source selector with selector switch	0	-	0	0	0
10B	Utility to utility or utility to generator	S	S	S	S	S
10D	Generator to generator	S	S	S	S	S
Indicating Lights/LEDs						
12C	Normal (S1) source connected	S	S	S	S	S
12 D	Emergency (S2) source connected	S	S	S	S	S
12G	Normal (S1) source available	S	S	S	S	S
12 H	Emergency (S2) source available	S	S	S	S	S
12 L	Normal (S1) source tripped (requires feature 16)	0	0	0	0	0
12M	Emergency (S2) source tripped (requires feature 16)	0	0	0	0	0
Source Available Contacts						
14 C	Normal (S1) source available 4 Form C	0	0	0	0	0
14 D	Emergency (S2) source available 4 Form C	0	0	0	0	0
14E	Normal (S1) source available 1 Form C	S	-	S	S	S
14F	Emergency (S2) source available 1 Form C	S	-	S	S	S
14G	Normal (S1) source available 2 Form C	0	-	0	0	0
14 H	Emergency (S2) source available 2 Form C	0	-	0	0	0

[^11]Power Frame-Based—Automatic Transfer Switch Features, continued

Feature	Description	Open Transition			Closed Transition	
		ATV9	NTVE	BIV9	CTV9	CBV9
Number		MG	MG	MG	MG	MG
Position Contacts						
15E	Normal (S1) source position 1 Form C	S	-	S	S	S
15F	Emergency (S2) source position 1 Form C	S	-	S	S	S
15G	Normal (S1) source position 3 Form C	0	-	0	0	0
15 H	Emergency (S2) source position 3 Form C	0	-	0	0	0
15R	Normal (S1) source position 1 Form C (relay OUTPUT)	C	-	C	C	C
15S	Emergency (S2) source position 1 Form C (relay OUTPUT)	C	-	C	C	C
Integral Overcurrent Protection						
16N	Normal (S1) switch only	0	0	0	0	0
16E	Emergency (S2) switch only	0	0	0	0	0
16B	Normal (S1) and emergency (S2) switches	0	0	0	0	0
Metering (Specify normal (S1), emergency (S2) or load side for 18A thru E)						
18	Integrated load metering (DCT module)	0	-	0	0	0
18A	$10250 / 260$	0	0	0	0	0
18B	PX4000/6000/8000	-	0	-	-	-
18D	IO 130/140/150	0	0	0	-	-
18E	PXM2250/2260/2270	0	0	0	-	-
18 J	Integrated metering (DCT module-load side only)	0	0	0	0	0
20A	Rear bus connections	0	0	0	0	0
21A	Non-standard terminals (optional in IES for centers)	0	0	0	0	0
22	Ground bus with provisions to attach to neutral	0	S	0	0	0
22A	18 conductor ground bus 500 or 750 kcmil	S	0	S	S	S
22B	30 conductor ground bus 500 or 750 kcmil	0	0	0	0	0
22 C	Special ground bar-contact factory	0	0	0	0	0
22 D	16 conductor ground bus 500 or 750 kcmil	-	-	-	-	-
Plant Exerciser						
23M	Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe	S	-	S	S	S
Normal (S1) Source Sensing						
26D	Go to emergency (S2) input	C	-	C	C	C
26E	Go to emergency (S2) input with selector switch (1)	0	-	0	0	0
26 H	Phase reversal protection	S	-	S	S	S
26J	All phase undervoltage/underfrequency	S	-	S	S	S
26K	All phase overvoltage/overfrequency	S	-	S	S	S
26L	All phase voltage unbalance and phase loss	0	-	0	0	0
26 L	All phase voltage unbalance	S	-	S	S	S
Alternative Transfer Modes of Operation						
29 D	Dual ATS bypass	-	-	-	-	-
29G	Selector switch for auto or non-auto operation (1)	0	-	0	0	0
29J	Manual (pushbutton) transfer E to N ; automatic N to E (1)	0	-	0	0	0
29 L	Manual retransfer on/off input	C	-	C	C	C
29M	Manual retransfer on/off input with selector switch (1)	0	-	0	0	0
29K	Manual retransfer input	C	-	C	C	C

[^12]Note
(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Power Frame-Based - Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition			Closed Transition	
		MG	MG	MG	MG	MG
Open Transfer Operation Modes						
32A	Time delay neutral adjustable 0-120 seconds (delayed transition)	C	-	C	C	C
32B	Load voltage decay adjustable 2-30\% nominal voltage	C	-	C	C	C
32 C	In-phase transition defaults to load voltage decay	C	-	C	C	C
32D	In-phase transition defaults to time delay neutral	C	-	C	C	C
Logic Extender Cable (Open Enclosures Only)						
34 F	100 inches (2540 mm) (fixed mount only)	0	0	-	-	-
35 A	Pre-transfer signal contacts 1 Form C	C	-	C	C	C
35B	Pre-/post-transfer signal	C	-	C	C	C
36	Load shed from emergency (S2 inhibit)	C	-	C	C	C
36A	Load shed-S2 inhibit with keyed switch (INPUT)	0	-	0	0	0
37	Go to "isolated" position (not SE rated)	C	-	C	c	C
Suitable for Use as Service Equipment Requires 16B, N or S						
37A	Without ground fault protection	0	0	0	0	0
37B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	0	0	0	0	0

Stainless Steel Device Covers						
	SS cover for device plate or SE disconnect	0	0	0	0	0
38B	SS cover for controller	0	0	0	0	0
Space Heater with Thermostat						
41A	100 watts	-	-	-	-	-
41 E	375 watts	0	0	0	0	0
42	IBC/CBC seismic qualified	S	S	S	S	S
Load Management Contacts						
45A-K	Load sequencing contacts (1)	C	-	C	C	C
45L	Selective load shed (assignable to multiple out put contacts)	C	-	C	C	C
Closed Transition Operational Modes (User Must Specify)						
47C	Closed/in-phase transition default to load voltage decay	-	-	-	C	C
47D	Closed transition	-	-	-	C	C
47E	Closed/in-phase transition default to time delay neutral	-	-	-	C	C
47F	Closed transition load voltage decay	-	-	-	-	-
47G	Closed transition time delay neutral	-	-	-	-	-
47H	Parallel limit timer	-	-	-	S	S
Communications						
48D	PXG400 gateway (includes Modbus)	0	-	0	0	0
48G	Modbus TCP/IP gateway	0	-	0	0	0
48 P	Power supply for remote annunciator	0	-	0	0	0
48RAC	Remote annunciator with control (includes Modbus)	0	-	0	0	0
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	0	-	0	0	0
48 U	USB port	S	-	S	S	S
49A	Sensing isolation transformer Magnum	0	-	0	0	0
49B	Sensing isolation transformer	0	-	0	0	0
49 C	Multi-tap voltage transformer (non AG only)	S	S	S	S	S

[^13]Power Frame-Based—Automatic Transfer Switch Features, continued

Feature	Description	Open Transition			Closed Transition	
Number		MG	MG	MG	MG	MG
Surge Protection Device with $12 \mathrm{ft} \mathrm{Cable} \mathrm{(on} \mathrm{Normal)}$						
51S1	50 kA -SPD (1)	0	0	0	0	0
51S2	80 kA -SPD (1)	0	0	0	0	0
51S3	100 kA -SPD (1)	0	0	0	0	0
51S4	120 kA -SPD (1)	0	0	0	0	0
51S5	160 kA -SPD ${ }^{(1)}$	0	0	0	0	0
51S6	200 kA -SPD (1)	0	0	0	0	0
51S7	250 kA -SPD (1)	0	0	0	0	0
51S8	300 kA -SPD (1)	0	0	0	0	0
5159	400 kA -SPD (1)	0	0	0	0	0
52 B	24 V generator battery power	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-
54 A	Front access cabinet	0	0	0	0	0
54B	Upgrade to 316 stainless steel	-	-	-	-	-
55B	Source swap (normal—bottom / emergency-top)	0	0	0	0	0
57A	Magnum breaker lift device (1) NEMA 1 only	0	0	-	-	-
57B	Magnum breaker lift device bypass (2) NEMA 1 only	-	-	0	0	0
58A	Shutterless cassette (drawout only)	S	S	S	S	S
58B	Shuttered cassette (drawout only)	0	0	0	0	0
59 A	Silver-plated bus	S	S	S	S	S
59B	Tin-plated bus	0	0	0	0	0
61 A	UPS device	-	0	-	-	-
61B	UPS 120 Vac terminal block input	-	0	-	-	-
80A	Emergency (S2) inhibit contact	C	-	C	C	C
Monitoring Outputs						
81A	General alarm indication contact	C	-	C	C	C
81B	ATS not in automatic	C	-	C	C	C
81C	ATS in test	C	-	C	C	C
81D	Engine test aborted	C	-	C	C	C
81 E	Cooldown in process	C	-	C	C	C
81F	Engine start contact status	C	-	C	C	C
81G	Emergency inhibit on	C	-	C	C	C
81GL	Emergency inhibit on with white indicating light (2)	0	-	0	0	0
81H	ATS on bypass	C	-	C	C	C
Inputs						
81J	Lockout	C	-	C	C	C
81K	Monitor mode	C	-	C	C	C
81L	Remote load test	C	-	C	C	C
Three Source ATS Control (Master/Slave)						
90 A	Master control output	C	-	C	C	C
90B	Slave input	C	-	C	C	C

[^14]
Notes

(1) Add feature package B or C (i.e., 51S4B).

B: LED indication + audible alarm, Form C contact, EMI/RFI filtering (standard)
$C: B+$ surge counter with Reset button (standard with surge)
${ }^{2}$ 2 When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Feature Description

Timers

1. Time Delay Normal to Emergency (TDNE)

Provides a time delay to allow for the generator to warm up before transferring the load to the emergency source.
Timing begins only after the Emergency Source becomes available and is deemed good based on the programmable voltage and frequency set points in the controller.

2. Time Delay Engine Start (TDES)

Provides a time delay before initiating the generator start cycle. This is to account for momentary power outages or voltage fluctuations of the normal source. Provides a Form C contact to the generator starter circuit.

3. Time Delay Emergency to Normal (TDEN)

Provides a time delay of the retransfer operation to permit stabilization of the normal source. Timing begins only after the normal source becomes available and is deemed good based on the programmable voltage and frequency set points in the controller. This function is failsafe protected.

4. Time Delay Engine Cooldown (TDEC)

Provides a time delay before initiating the generator stop cycle after the retransfer operation. This allows the generator to cool down by running unloaded. Timing begins on completion of the retransfer cycle.

Source 2 Sensing

5. Source 2-Monitoring and Protection
Provides monitoring and protection based on the Source 2 voltage and/or frequency set points. All
Feature 5 monitoring and protection functions are failsafe operations.

5H. Three-Phase Rotation Protection

Provides three-phase reversal sensing in order to protect against transferring to an out-of-phase source. The controller will treat the opposite source as unavailable if the sources are out of phase, based on programmable set points in the controller.

5J. All-Phase Undervoltage/ Underfrequency Protection

Provides undervoltage/ underfrequency monitoring and protection based on programmable set points in the controller.

5K. All-Phase Overvoltage/

 Overfrequency ProtectionProvides overvoltage/ overfrequency monitoring and protection based on programmable set points in the controller.

5L. Three-Phase Voltage Unbalance/Phase Loss
 Provides phase loss detection from blown fuses on the Source 2 supply circuit.
 5M. All Phase Voltage Phase Loss

Provides phase loss detection on the Source 2 supply circuit.

6B. Test Operators

Automatic transfer switches are provided with a controller faceplate test pushbutton that simulates a loss of the Source 1 as standard. All programmed time delays (TDNE, TDEN, etc.) will be performed as part of the test. Engine run time of the test is equal to the plant exerciser programmed set point. All tests are fail-safe protected.

6C. Remote Engine Test (INPUT)

Provides an input to initiate a test to simulate a loss of the Source 1 as standard. All programmed time delays (TDNE, TDEN, etc.) will be performed as part of the test. Engine run time of the test is equal to the plant exerciser programmed set point. All tests are fail-safe protected. The test is initiated via remote momentary contact closure.

6D. Maintained 2 Position Test Switch

Provides a door-mounted 2-position test switch marked "Auto" and "Test". Available with ATC-900 controller only.

6H. 4-Position Test Selector

 Switch (FPSS)Provides a door-mounted 4position, maintained contact selector switch marked "Auto," "Test," "Engine Start," and "Off." The FPSS is fail-safe protected, except for the "Off Position." Transfer switch operation is determined by the switch position. Transfer switch operations are as follows:
"Auto"—Automatic operation mode.
"Test"—A load test is performed until the switch is moved to another position.
"Engine Start"—A no-load test is performed until the switch is moved to another position.
"Off"-The automatic transfer controller and engine start contact are disabled. A white pilot light is provided to indicate that the FPSS is in the "Off" position.

8F. Bypass Timers -

 External Pushbutton InputProvides an input from a customer supplied external pushbutton to bypass or reduce the programmed time delays to zero for TDEN and TDNE.

9B. Maintenance Selector Switch (MSS)

Provides a 2-position, maintained contact selector switch marked "Operate" and "Disable." When the MSS is placed in the
"Disable" position, the controller logic will be disconnected from the transfer motor circuit. The MSS is placed in the
"Operate" position for normal automatic operation.

9C. Monitor Mode Selector Switch

Provides a 2-position selector switch to enable/disable Monitor Mode on the controller. When enabled, the controller will monitor the availability, connected state and voltage conditions and will initiate a transfer.

10. Preferred Source

Selector

Provides a means to designate either Source 1 or Source 2 as the "Preferred" source. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

Note: This is a programmable software feature not an actual switch.

10A. Preferred Source

 Selector (INPUT)Provides a means to designate either Source 1 or Source 2 as the "Preferred" source using a remote contact or device panel mounted contact closure. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

10B. Preferred Source

 SelectorProvides a programmable source selector for use on systems comprised of dual utility or utility and engine/ generator power sources.

10C. Preferred Source Selector with Selector Switch

Provides a means to designate either Source 1 or Source 2 as the "Preferred" source via device panel mounted selector switch control. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

10D. Preferred Source

 SelectorProvides a programmable source selector for use on systems comprised of dual engine/generator power sources. (Dual engine starting circuits are provided.)

12C. Source 1-Load Connected
Provides a green indication that indicates the load is connected to Source 1 when lit.

12D. Source 2-Load Connected
Provides a red indication that indicates the load is connected to Source 2 when lit.

12G. Source 1-Present Provides a white or amber indication "Depending on the Controller" that Source 1 has power; however, this does not indicate whether Source 1 is acceptable.

12H. Source 2—Present

Provides an amber indication that Source 2has power; however, this does not indicate whether Source 2 is acceptable.

Overcurrent Trip Indication
Available only with integral overcurrent protection (Feature 16) (shown on automatic transfer controller display).

12L. Source 1 Trip Indication

The automatic transfer controller display will read
"Lockout" if the Source 1 circuit breaker is in the "tripped" position.

12M. Source 2 Trip Indication
The automatic transfer controller display will read
"Lockout" if the Source 2 circuit breaker is in the "tripped" position.

14. Relay Auxiliary Contacts 14C. Source 1 Present
 Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14D. Source 2 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14E. Source 1 Available

Provides 1 Form C relay auxiliary contact. The relay is energized when Source 1 is available and within the controller's programmable set points.

14F. Source 2 Available
Provides 1 Form C relay auxiliary contact. The relay is energized when Source 2 is available and within the controller's programmable set points.

14G. Source 1 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14H. Source 2 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14J. Source 1 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14K. Source 2 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14L. Source 1 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14M. Source 2 Present
Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

15. Switch Position

 Indication ContactProvides a contact that indicates if the power switching device is in the "open" or "closed" position.

15E. Source 1 Position

 Indication ContactProvides 1 Form C contact that indicates the position of the Source 1 power switching device.

15F. Source 2 Position Indication Contact

Provides 1 Form C contact that indicates the position of the Source 2 power switching device.

15G. Source 1 Position Indication Contact
Provides 3 Form C contact that indicates the position of Source 1 power switching device.

15H. Source 2 Position

 Indication ContactProvides 3 Form C contact that indicates the position of Source 1 power switching device.
15K. Normal (S1) Breaker Position Indication 1 Form C (Output)
Provides 1 Form C contact of the breaker indicating the breaker position.

15L. Normal (S1) Breaker Position Indication 2 Form C

 (Output)Provides 2 Form C contact of the breaker indicating the breaker position.

15M. Source 2 Load Shed Contacts

Provides 4 Form C contacts to initiate a load circuit disconnect while on Source 2. This gives the user the capability of selectively choosing not to run certain loads while on Source 2.

15R. Normal (S1) Source Position 1 Form C (Relay OUTPUT)

Provides 1 Form C relay contact that indicates the position of the Source 1 power switching device.

15S. Emergency (S2)
 Source Position 1 Form C (Relay OUTPUT)

Provides 1 Form C relay contact that indicates the position of the Source 2 power switching device.

16B. Integral Overcurrent Protection on Both Power Source Switching Devices

Provides integral overcurrent protection on both Source 1 and Source 2 power switching devices.
16E. Integral Overcurrent Protection on the Source 2 Power Switching Device Provides integral overcurrent protection on the Source
2 power switching device.
16N. Integral Overcurrent Protection on the Source 1 Power Switching Device
Provides integral overcurrent protection on the Source 1 power switching device.

16S. External Overcurrent Protection on the Source 1 Power Switching Device

Provides overcurrent protection on the Source 1 power switching device.

17. Breaker with an

 Overcurrent Trip Unit
17H. Padlockable Handle Lock Hasp

Provides a means to padlock the breaker supplied only on a service entrance rated contactor based design. The padlock kit is provided as a ship loose item and able to be customer mounted as a mechanical means to lock out the breaker.

17N. Normal (S1) Breaker with Eaton 310+ Trip Unit

The UL 1008 integrated service entrance rated contactor design has a 100\% load rating.

18. Metering

The ATS controller provides voltage and frequency readings. If additional metering functions are required, Eaton offers a series of digital meters that may be added to the ATS. The meter type can provide simple current and voltage readings or more capable meters providing Power, Demand and energy readings.

Available with an optional communications interface.

(See Feature 48-

Communications for available communication modules.)
Feature 18 metering options include all required external devices (CTs, etc.) for a fully functioning metering system.

18J. Integrated Metering (LOAD Side)

This metering option incorporates basic load metering into the ATC-900 using the add-on DCT module. In addition to the standard voltage and frequency metering, the DCT module adds current, real power, reactive power, apparent power, and power factor. This option also enables the selective load shed feature (option 45L).
IO 130/140/150
(Option 18d)

IO 130

This digital meter provides basic current and voltage per phase (L-L, L-N) and min./ max. readings (I, V). Optional communication RS-485, Modbus RTU.

IO 140
In addition to basic current and voltage, will provide frequency, power measurements real, reactive and apparent power, total (W, VAR, VA). Optional communication RS-485, Modbus RTU.

IQ 150
In addition to basic current/ voltage/frequency and power readings, will provide Energy Real reactive and apparent (Wh, VAR, VAh). Optional communication RS-485, Modbus RTU.

IO 250/260 (Option 18a)
 IQ 250

This digital meter provides current per phase and current demand, voltage (L-L, L-N) and frequency. Power, energy and demand readings. Real, reactive and apparent power and energy, power factor. RS-485 communications, Modbus RTU or ASCII. Optional I/O slots available.

IQ 260

In addition to all of the features of the IQ 250, power quality analysis is available with THD voltage and current per phase.

Power Xpert 2000
 (Option 18e)

Provides either a Power Xpert PXM 2250, PXM 2260 or PXM 2270 meter.

Power Xpert 4000, 6000, 8000 (Option 18b)
Provides one of the Power Xpert Meters with or without graphic displays.

20A. Rear Bus Provisions

Provides Source 1, Source 2 and Load Circuit rear accessible bus stabs with provision for bus bar connection. Eaton transfer switches are provided with either front or rear (dependent on switch type) connected solderless screwtype terminals for power cable connection as standard.

21A. Optional Power Cable Connection Terminals

Eaton transfer switches are provided as standard with Source 1, Source 2 and load circuit solderless screw-type terminals for power cable connection. Alternate terminal wire sizes, and compression lug provisions may be available dependent on transfer switch type and ampere rating.

Plant Exerciser

23A. Plant Exerciser With

 Fail-SafeProvides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations.

Programmable set points for test intervals are start time, either disabled, daily, 7, 14 or 28 days.

15-minute fixed engine test time.

Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is fail-safe protected.

23K. Plant Exerciser With

 Fail-SafeProvides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations.

Programmable set points for test intervals are start time, either disabled, daily, 7,14 or 28 days, engine test time.
Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is fail-safe protected.

23M. Selectable-Disabled, 7, 14, 28 or Day Interval, or Calendar Date, 0-600
Minutes, Load/No Load, with Fail-safe
Provides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations. Programmable set points for test intervals are start time, engine test time and either disabled, daily, 7,14 or 28 days or up to 12 specific calendar dates. Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is failsafe protected. This feature includes independent time delays for time delay normal to emergency, time delay emergency to normal and time delay for engine cooldown.

Source 1 Sensing

26. Source 1-Monitoring

 and ProtectionProvides Source 1 monitoring and protection functions. If Source 1 fails, then the automatic transfer controller will begin the sequence of operations necessary to transfer the load to Source 2.
All Feature 26 monitoring and protection functions are failsafe operations.

26D. Go to Emergency (Source 2)

Provides the capability for an external contact closure to initiate a transfer to the Source 2 power source. This includes starting the generator, performing the programmed time delays and the transfer operation. Retransfer will occur when the external contact is opened. This is a fail-safe function.

26E. Go to Emergency (S2) Input with Selector Switch
Provides a device panel mounted selector switch labeled, "Auto/Go to Source $2^{\prime \prime}$, to initiate a transfer to the Source 2 power source. This includes starting the generator, performing the programmed time delays and the transfer operation. Retransfer will occur when the external contact is opened. This is a fail-safe function.

26H. Three-Phase Rotation Protection

Provides three-phase reversal sensing in order to protect against transferring to an out-of-phase source. The controller will treat the opposite source as unavailable if the sources are out of phase, based on programmable set points in the controller.

26J. All-Phase Undervoltage/ Underfrequency Protection

Provides all-phase undervoltage/underfrequency monitoring and protection based on programmable set points in the controller.
26K. All-Phase Overvoltage/ Overfrequency Protection
Provides all-phase overvoltage/overfrequency monitoring and protection based on programmable set points in the controller.

26L. Three-Phase Voltage Unbalance/ Phase Loss

Provides phase loss detection from blown fuses on the Source 1.

26M. All-Phase Voltage

Phase Loss

Provides phase loss detection on the Source 1 supply circuit.

26N. All-Phase

 Undervoltage ProtectionProvides undervoltage protection for Source 1 (ATC-100 Controller only).

29. Transfer Operation

 ModesProvides standard or optional transfer modes, mode selection devices and operational methods for transfer switches.

29D. Dual ATS Bypass

Provides an active controller while the bypass isolation switch is in the bypass mode.

29G. Automatic/Manual Operation With Selector Switch

Provides 2-position selector switch (labeled Auto/manual) that permits selection of automatic or manual initiated transfer. When in the "Auto" position, the transfer switch controller initiates a transfer, retransfer and generator startup and shutdown. When in the "Manual" position, the operator is required to initiate generator start/stop and a transfer/retransfer using a door-mounted 3-position selector switch (Source 1-Off-Source 2).

Note: Transfer switches with Feature 29 must be labeled as non-automatic transfer switch equipment

29J. Automatic Transfer or Automatic Transfer With Non-Automatic Retransfer Operation
Provides a field-selectable programmable set point that permits the transfer switch to operate in one of the following two transfer modes (A or B):
A. Fully automatic operation.
B. Automatic engine/ generator startup and automatic transfer operation from Source 1 to Source 2. Manual pushbutton operation is required to initiate the retransfer operation and engine/generator shutdown. The pushbutton for manual retransfer operation is included. This is fail-safe protected.

29K. Manual Retransfer (INPUT)

Provides an input to remotely initiate a manual retransfer from Source 2 to Source 1.

29L. Manual Retransfer On/Off (INPUT)

Provides an input to remotely enable or disable the manual retransfer feature.

29M. Manual Retransfer

 On/Off Input with Selector SwitchProvides a device panel mounted selector switch to enable or disable the manual retransfer feature. Selection of this option automatically adds option 29J.

32. Delayed Transition Transfer Modes for Open Transition Transfer

 SwitchesProvides delayed transition transfer modes for an open transition transfer switch. Often used in systems with inductive loads, a delayed transition transfer switch may prevent or reduce inrush currents due to out-of-phase switching of inductive loads.

32A. Time Delay Neutral

Provides a time delay in the neutral position during the transfer and retransfer operations during which both Source 1 and Source 2 are disconnected from the load circuit. This allows inductive loads time to reach a safe voltage and eliminate back EMF. The time delay is programmable and is the same for both transfer and retransfer operations. This is a passive feature that requires the consulting engineer/installer to determine the settings based on how the user will operate the facility. Adjustable 0-120 seconds.

Standard and Optional Features

32B. Load Voltage Decay

Provides load voltage measurement to sense back EMF that is generated when the transfer switch is the neutral position. It provides a delay in transfer in either direction if an unacceptable level is sensed as established by a programmed set point. This is an active feature that adapts to how the facility is operating in order to minimize neutral position wait time, but ensure safety. Adjustable
$2-30 \%$ of nominal voltage.

32C. In-Phase Transition

 With Default to Load Voltage DecayProvides in-phase transition, which is a feature that will permit a transfer or retransfer between two available sources that have a phase angle difference near zero. The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, then the controller defaults to the load voltage decay operation as described in Feature 32B. Adjustable frequency difference $0.0-3.0 \mathrm{~Hz}$. Adjustable synchronization time allowance 1-60 minutes.

32D. In-Phase Transition With Default to Time Delay

 NeutralProvides in-phase transition, which is a feature that will permit a transfer or retransfer only between two available sources that have a phase angle difference near zero. The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, then the controller defaults to the time delay neutral operation as described in Feature 32A. Adjustable frequency difference $0.0-3.0 \mathrm{~Hz}$. Adjustable synchronization time allowance 1-60 minutes.

32E. Delayed Transition

The transfer and retransfer operations during which both Source 1 and Source 2 are disconnected from the load circuit. The time delay is programmable and the same for both transfer and retransfer operation. Adjustable 3-60 seconds.

32F. In-Phase Transition

Provides in-phase transition, this feature will permit a transfer or retransfer between two available sources that have a phase angle difference of 8 degrees or less. The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, the Alarm relay will energize and "Failed to Sync" will be displayed on Line 1 of the controller. After resetting the alarm, another in-phase transition may be attempted or a non-synchronized transfer may be initiated by failing the connected source. The adjustable frequency difference is 0.0 to 3.0 Hz .

If the synchronization does not occur within a specified amount of time, the Alarm relay will energize and the failure will be logged into the transfer history as either "Sync Fail - Freq" or "Sync Fail - Phase" depending on whether the frequency difference or the phase difference was excessive.

32G. Time Delay Neutral

This feature provides a time delay in the neutral position during the transfer and retransfer operations during which both the utility source and the generator source are disconnected from the load circuit. TDN cannot be implemented on a transfer switch using a 2-position contactor.

Jumper selectable at disable (0 seconds) or enable (2 seconds).

Logic Extender Cable

34A. 48 Inches (1219 mm)
Provides logic extension cable with connectors.

34C. $\mathbf{9 6}$ Inches ($\mathbf{2 4 3 8} \mathbf{~ m m}$)
Provides logic extension cable with connectors.

34E. 144 Inches ($\mathbf{3 6 5 8} \mathbf{~ m m}$)

Provides logic extension cable with connectors.

34F. $\mathbf{1 0 0}$ Inches ($\mathbf{2 5 4 0} \mathbf{~ m m}$) Provides logic extension only for open Magnum ATS.

35A. Pre-Transfer Signal

 with 1 Form C ContactProvides a signal prior to the transferring of the load. Will not transfer until the programmable delay set point in the controller is reached. The pre-transfer time delay option, if both sources are not available, will ignore the time delay set in the controller.

35C. Pre-/Post-Transfer Signal (OUTPUT)

Provides a Form C contact signal prior to and after a transfer from S1 to S2 or S2 back to S1. Will not transfer until the programmable delay set point in the controller is reached. If both sources are not available, this option will ignore the time delay set in the controller. The time delay is programmable for 0-120 seconds pre transfer and 0-120 seconds post transfer.

35D. Post-Transfer Signal with 1 Form C Contact

Provides a Form C output from the ATC-900 to signal that the switch did transfer. The time delay is programmable for $0-120$ seconds but does not start to count down until connected to the new source

36. Load Shed From Emergency / Source 2 Inhibit (INPUT)

Provides the capability for an external NC contact to initiate a load circuit disconnection from the Source 2 power source. If the load circuit is connected to Source 2 and the contact is opened, then a retransfer to Source 1 is completed if Source 1 is available. If Source 1 is not available, then the transfer switch will transfer to neutral. If the load circuit is connected to Source 1 and the contact is open, then a transfer Source 2 is prohibited.

36A. Load Shed / Source 2 Inhibit with Keyed Switch (INPUT)

Provides a device panel mounted selector switch to initiate a load circuit disconnection from the Source 2 power source. If the load circuit is connected to Source 2 and the selector switch is switched to the "S2 Inhibit/Enabled" position, then a retransfer to Source 1 is completed if Source 1 is available. If Source 1 is not available, then the transfer switch will transfer to neutral. If the load circuit is connected to Source 1 and the switch is in the "S2 Inhibit" position, then a transfer Source 2 is prohibited.

37. Go to Neutral (not SE Rated) (INPUT)

Provides an input to transfer a three-position transfer switch from either of the connected sources to the off or neutral position. This features applies only to those transfer switches with three-position power device using a remote contact closure. When the signal is removed, the transfer switch will transfer back to the available, preferred source.

Service Equipment Rated Transfer Switch

Provides the label "suitable for use as service equipment" and the features necessary to meet the requirements for the label. Includes service disconnect with visible indication and neutral assembly with removable link. Feature 16B or 16N must be selected separately for a molded case or power circuit breaker design and 17 N for a service rated contactor design.

37A. Service Equipment

 Rated Transfer Switch
Without Ground

Fault Protection

Provides service equipment rating for an application that does not require ground fault protection.

37B. Service Equipment Rated Transfer Switch With Ground Fault Protection

 Provides service equipment rating for an application that requires ground fault protection.
38. Steel Cover

Provides protection for a device panel as option 38a and protection for the controller as option 38b.

39. Distribution Panel

The distribution panel feature uses a panelboard design with bolt-on circuit breakers type EHD. Bolt-on breakers are designed to hold up to the changes in temperature and humidity that an industrial application calls for. (240) 120 Vac single-phase systems only.)

39A. 225 A With (2) 200 A Feeders

39B. 300 A With (3) 200 A Feeders

39C. 400 A With (4) 200 A Feeders

41. Space Heater With Thermostat

Provides a space heater and adjustable thermostat. External control power is not required. Availability is dependent on transfer switch type.

41A. Space Heater With

 Thermostat-100 WattProvides 100-watt space heater with an adjustable thermostat.

41E. Space Heater With

 Thermostat-375 WattProvides 375-watt space heater with an adjustable thermostat.

42. Seismic Qualification
 45. Load Sequencing Capability

Provides the capability for sequential closure of up to 10 addressable relays after a transfer. Each addressable relay provides (1) Form C contact. A single adjustable time delay between each of the relay closures is provided. Operates via a subnetwork. Adjustable 1-120 seconds.

45A-J. Load Sequencing

Contacts

(1-10) (OUTPUT)
Provides the capability for sequential contact closure of up to 10 contacts after a transfer. A single adjustable time delay between each of the relay closures is provided. Operates using the configurable output contacts (Form C). Adjustable 0-120 seconds. Each individual configurable contact has its own adjustable time delay. When more than one contact is supplied, they start the timing sequence at the same time.

45L. Selective Load Shed

Provides an output contact that opens to shed a customer load if the measured kW value exceeds the load shed kW set point value. The load will be picked up if the load restore set point is attained.

47. Transfer Modes for Closed Transition Transfer Switches

Provides available transition transfer modes for a closed transition transfer switch. Closed transition is a "make before break" transfer and retransfer scheme that will parallel (a maximum of 100 ms) Source 1 and Source 2 providing a seamless transfer when both sources are available. The closed transition feature includes permissible voltage difference frequency difference and synchronization time allowance set points. The phase angle difference between the two sources must be near zero for a permitted transfer. These are all programmable set points in the controller.

47C. Closed Transition With Default to In-Phase Transition With Default to Load Voltage Decay
Provides a closed transition transfer as the primary transfer mode. In the event Source 1 and Source 2 fail to synchronize within the permitted voltage difference, frequency difference, phase angle difference and time, then the controller defaults to the in-phase transition with default to load voltage decay operations as described in
Feature 32C and 32B
Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$.
Adjustable voltage difference
1-5\% volts. Adjustable synchronization time allowance 1-60 minutes.

47D. Closed Transition

Provides a closed transition transfer as the primary transfer mode. Only under a fail-safe condition (i.e., loss of the connected source) will the controller transfer to the alternate source using the load voltage decay operation as described in Feature 32B.
Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$.
Adjustable voltage difference 1-5\% V.
47E. Closed Transition With Default to In-Phase Transition With Default to Time Delay Neutral
Provides a closed transition transfer as the primary transfer mode. In the event Source 1 and Source 2 fail to synchronize within the permitted voltage difference, frequency difference, phase angle difference and time, then the controller defaults to the in-phase transition with default to time delay neutral operation as described in
Features 32D and 32A.
Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$. Adjustable voltage difference $1-5$ percent volts. Adjustable synchronization time allowance 1-60 minutes.

Standard and Optional Features

47F. Closed/Load Voltage Decay

Controllers equipped with Feature Set 47F will perform a closed transition when both sources are synchronized in frequency, phase and voltage. Failure to synchronize will result in an open transition Time Delay Load Voltage Decay transfer. Time Delay Load Voltage Decay uses the load voltage measurements to sense back EMF that is generated when the transfer switch is in the Neutral position.

It provides a delay in transfer in either direction if an unacceptable level is sensed as established by a customer programmed level. The transfer will not take place until the back EMF decays below the acceptable programmed level. This feature has a separate setting of enabling or disabling the operation. If disabled, the transfer switch will not delay in the Neutral position and will transfer between the sources as fast as possible. This feature is not available with the Time Delay Neutral Optional Feature 32A.

47G. Closed/Time Delay Neutral

Controllers equipped with Feature Set 47F will perform a closed transition transfer when both sources are synchronized in frequency, phase and voltage. Failure to synchronize will result in an open transition Time Delay Neutral transfer. Time Delay Neutral provides a time delay in the transfer switch neutral position when both sources are open. This delay takes place when the load is transferred in either direction to prevent excessive in-rush currents due to out-of-phase switching of large motor loads.

47H. Parallel Limit Timer

Provides an independent timing relay with NO contact (watchdog timer) activated only during a closed transition transfer. The timing is set to 100 ms per code requirements and will initiate a contact closure that can be used by the end user to annunciate an alarm or to trip an upstream breaker.

48. Communication Modules

Provides communications modules for the transfer switch controllers.

48D. Ethernet Communication (PXG900 Gateway)

Translates Modbus RTU, QCPort or INCOM to Modbus TCP. The PXG900 Gateway includes embedded Web server monitoring of up to 64 connected devices.

48F. Modbus

 Communication (MPONI)Provides Modbus RTU protocol via communications module.

48G. Modbus TCP/IP

Provides a third-party device for Modbus 485 to Modbus TCP/IP pass through.

48M1-48M4. I/O Module

Each I/O module provides four additional user configurable inputs and outputs. Up to four additional I/O modules can be added, either by the factory or in the field.

48MRAC. Multi-view Remote Annunciator with Control

Provides remote monitoring of source availability, source position and test status for up to eight transfer switches with the ATC-300+ or ATC900 controller. Operates using Modbus protocol.

48P. Remote Annunciator Power Supply

Provides a remote mounted power supply providing DC power to the remote annunciator.

48RAC. Remote

 Annunciator with ControlProvides remote monitoring and control via a color touch screen display for the controllers. Operates using Modbus protocol (MPONI required for the ATC-600/ 800).

48U. USB Port for Memory Stick

Provides a device pane mounted USB port for uploading or downloading controller set points and for downloading event history.

49. Sensing Isolation Transformer

Provides a set of control power transformers that converts the delta system sensing to a wye sensing input to the controller. The sensing isolation transformer is recommended for high resistance grounded systems and for grounded delta systems.

49A. Sensing Isolation Transformer

Option 49A is available for Magnum ATSs.

49B. Sensing Isolation Transformer

Option 49B is available for MCCB and contactor transfer switches.

49C. Multi-Tap Control Power Transformer

The multi-tap control power transformer is used to stepdown voltage to 120 Vac for the transfer switch control circuit. Incoming voltage can be adjusted by moving the tap on the primary side from $208 \mathrm{~V}, 240 \mathrm{~V}$ or 480 V for 60 Hz applications or 220 V , $380 \mathrm{~V}, 415 \mathrm{~V}, 600 \mathrm{~V}$ for 50 Hz applications.

Option 51. Surge

Protection Device

Two types of surge protection devices are used in Eaton automatic transfer switches. Both types meet the requirements for UL 1449 3rd Edition for surge suppression devices and are CE marked. The type CVX is used on Eaton wallmount ATS designs and the Eaton type SPD are used on floor-standing designs.

CVX

The CVX device features a Thermally Protected Metal Oxide Varistor technology and comes with high intensity LED phase status indicators

SPD

The SPD features a Thermally Protected Metal Oxide Varistor technology. It comes with dual-colored protection status indicators for each phase and for neutral-ground protection mode. It comes with an audible alarm with silence button and a Form C contact.

An optional SPD with surge counter feature package is available. This provides sixdigit surge counter with reset button.

51S1B. 50 kA-SPD standard source 1

51S2B. 80 kA-SPD standard source 1

51S3B. 100 kA—SPD
standard source 1
51S4B. 120 kA—SPD
standard source 1
51S5B. 160 kA—SPD
standard source 1
51S6B. 200 kA—SPD
standard source 1
51S7B. 250 kA—SPD
standard source 1
51S8B. 300 kA—SPD
standard source 1
51S9B. 400 kA—SPD
standard source 1
51S1C. 50 kA—SPD standard with surge counter source 1

51S2C. 80 kA—SPD standard with surge counter source 1

51S3C. 100 kA—SPD
standard with surge counter source 1

51S4C. 120 kA—SPD standard with surge counter source 1

51S5C. 160 kA—SPD
standard with surge counter source 1

51S6C. 200 kA—SPD standard with surge counter source 1

51S7C. 250 kA—SPD
standard with surge counter source 1
51S8C. 300 kA—SPD standard with surge counter source 1

51S9C. 400 kA—SPD
standard with surge counter source 1

51SC8. Remote display panel (8 feet standard)

51SC12. Remote display panel (12 feet)
51SC4. Remote display panel (4 feet)

54. Front Access

54A. Front access cabinet available for all Magnum products. This option will add an additional pull section mounted on the side of the switch.

54B. Upgrade to 316 Stainless Steel

Provides a stainless enclosure with 316 grade. Contact plant for availability.
55B. Source Swap (Normal Bottom/Emergency Top)
Provides ability to designate the Normal Source to be physically located at the bottom of the structure and the Emergency Source to be at the top of the structure. Contact plant for availability.

59a. Silver-Plated Bus

Silver-plated bus is a standard feature for all Magnum-based designs.

59b. Tin-Plated Bus

Tin-plated bus is available as an option for Magnum-based designs.

60. Dedicated Voltage

 Control Power TransformerThe dedicated voltage control power transformer can be selected for 208/240 V systems where an added buffer is preferred between the incoming power and the micro-processor controller's control power input.

61A. UPS Device with Terminal Block Input
Provides a factory mounted and wired UPS sized to provide power to the ATC controller and the bypass isolation logic controller. Inputs to the UPS are wired out to a terminal block.

61B. UPS 120 Vac Ready, Terminal Block Input
Provides a terminal block input only for customer supplied external mounted UPS that provides power to the logic controller supplied in bypass isolation switches.

61C. Power Loss Buffer for ELC

Provides ride-through power for the ELC contained in automatic transfer switches with bypass isolation. This feature does not provide continuous power for microprocessor controller.

61D. UPS 120 Vac Ready, Terminal Block Ready
Provides a terminal block input only for customer supplied external mounted UPS that provides power to the ATC controller.

61E. 24 Vdc Ready, Terminal Block Ready
Provides a terminal block input only for customer supplied external 24 Vdc power to the ATC900 controller (requires the DCT Module).

61F. Power Loss Buffer ATC Comm (Requires DCT Module)

Provides ride-through power for the ATC-900 controller to maintain communications during a power loss. The power loss buffer provides 24 Vdc to the controller (requires the DCT module).

80A. Load Shed From Emergency / Source 2 Inhibit (INPUT)

Identical to option 36 and includes wiring from controller to terminal block.
81A. General Alarm Contact (OUTPUT)
Provides a remote indication that an alarm condition exists on the ATC-900. Remains on until all alarms are resolved and reset at the controller.

81B. ATS Not in Automatic (OUTPUT)
 Provides remote indication that the ATS is not in automatic mode.

81C. ATS in Test (OUTPUT)

Provides remote indication that the ATS is currently running a test. The test could be initiated by the device panel engine test pushbutton or automatically using the programmed engine exerciser.

81D. Engine Test Aborted (OUTPUT)

Provides remote indication that an engine test has been aborted. The ATC-900 event log contains detailed event information that can help assess the reason the test was aborted.

81E. Cooldown in Process (OUTPUT)
 Provides remote indication that an engine cooldown is in progress.

81F. Engine Start Contact Status (OUTPUT)

Provides remote indication that the engine start contact is calling for the generator to start.

81G. LOAD SHED-

S2 Inhibit On (OUTPUT)
Provides remote indication that the emergency inhibit is on.
81GL. LOAD SHED S2 Inhibit On with White Indicating Light
Provides a 30 mm pilot light on the transfer switch device panel to indicate that S2 Inhibit is on.

81H. ATS on Bypass (OUTPUT)

Provides remote indication that the bypass switch is carrying the load.

81J. Lockout

Provides an input to temporarily disable automatic control. This feature is used to indicate a tripped breaker in a breaker-based transfer switch. It is treated as an alarm and the alarm must be reset to continue automatic operation.

81K. Monitor Mode

Provides an input to disable automatic control in the ATC900 controller. This function is used for when manual operation is required. The controller continues to accurately monitor source status and set points can be changed; however, no action will be initiated by the controller.

81L. Remote Load Test

Provides an input to initiate a system test using a remote contact closure. The test will run based on the programmed engine test settings in the controller. The settings include with or without load, engine run time, and independent test time delays.

Standard and Optional Features

81M. Load Bank Control (OUTPUT)

Provides a remote output to disconnect a load bank if Source 1 fails while the load bank is running. The load bank control output is turned on when an unloaded engine test is in process and the load is connected to the source that is not under test. It is off at all other times. If, while an engine test is in process, the non-test source fails (i.e., Source 1), the test is aborted, which will cause load bank control relay to turn off in anticipation of transferring load to the generator.

81N. Health (OUTPUT)

Provides a remote indication that an alarm condition or loss of control power exists on the ATC-900. Remains on until an alarm condition occurs or control power is lost.

90A. Master Control (OUTPUT)

Provides the user with the ability to use two independent transfer switches in three source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS. The slave input receives the engine start signal from the Master controller.

90B. Slave Control (INPUT)

The ATC-900 Master/Slave controller functionality provides the user with the ability to use two independent transfer switches in three source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS. The slave input receives the engine start signal from the Master controller.

Glossary

With respect to their use in this document and as they relate to switch operation, the following terminology is defined:

Available-A source is defined as "available" when it is within its undervoltage/ overvoltage/underfrequency/ overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting.

Fail-safe-A feature that prevents disconnection from the only available source and will also force a transfer or retransfer operation to the only available source.

Retransfer-Retransfer is defined as a change of the load connection from the secondary to primary source.

Source 1-is the primary source or normal source or normal power source or normal. (Except when Source 2 has been designated the "Preferred Source.")

Source 2-is the secondary source or emergency source or emergency power source or emergency or standby or backup source. (Except when Source 2 has been designated the "Preferred Source.")

Source 1 Failed or Fails-

Source 1 is defined as "failed" when it is outside of its undervoltage or overvoltage or underfrequency or overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting.

Source 2 Failed or Fails-

Source 2 is defined as "failed" when it is outside of its undervoltage or overvoltage or underfrequency or overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting for a time exceeding 0.5 seconds after the time delay emergency fail (TDEF) time delay expires.

Transfer-"Transfer" is defined as a change of the load connection from the primary to secondary source except when specifically used as "Transfer to Neutral."

Transfer to Neutral-

"Transfer to Neutral" is defined as when the load circuits are disconnected from both Source 1 and Source 2.
kW Conversions

kW Conversion Chart

kW to Ampere Conversion Chart
Three-Phase Ampere Table at Common Line-to-Line Voltage

kW (1)	200 V	208 V	220 V	230 V	240 V	380 V	400 V	415 V	460 V	480 V	600 V
5.0	18	17	16	16	15	9	9	9	8	8	6
7.5	27	26	25	24	23	14	13	13	12	11	9
10.0	36	34	33	31	30	19	18	17	16	15	12
15.0	54	52	49	47	45	28	27	26	24	23	18
20.0	72	69	66	63	60	38	36	35	31	30	24
25.0	90	87	82	78	75	47	45	43	39	38	30
30.0	108	104	98	94	90	57	54	52	47	45	36
40.0	144	139	131	126	120	76	72	70	63	60	48
50.0	180	173	164	157	150	95	90	87	78	75	60
60.0	217	208	197	188	180	114	108	104	94	90	72
75.0	271	260	246	235	226	142	135	130	118	113	90
80.0	289	278	262	251	241	152	144	139	126	120	96
100.0	361	347	328	314	301	190	180	174	157	150	120
125.0	451	434	410	392	376	237	226	217	196	188	150
150.0	541	520	492	471	451	285	271	261	235	226	180
175.0	631	607	574	549	526	332	316	304	275	263	210
200.0	722	694	656	628	601	380	361	348	314	301	241
250.0	902	867	820	784	752	475	451	435	392	376	301
300.0	1083	1041	984	941	902	570	541	522	471	451	361
350.0	1263	1214	1148	1098	1052	665	631	609	549	526	421
400.0	1443	1388	1312	1255	1203	760	722	696	628	601	481
500.0	1804	1735	1640	1569	1504	950	902	870	784	752	601
600.0	2165	2082	1968	1883	1804	1140	1083	1043	941	902	722
700.0	2526	2429	2296	2197	2105	1329	1263	1217	1098	1052	842
800.0	2887	2776	2624	2510	2406	1519	1443	1391	1255	1203	962
900.0	3248	3123	2952	2824	2706	1709	1624	1565	1412	1353	1083
1000.0	3609	3470	3280	3138	3007	1899	1804	1739	1569	1503	1203

Note
(1) At 0.8 power factor.

[^0]: Notes
 (1) Up to 480 volts.
 (2) 1600 A is dual drawout only.

[^1]: Notes
 (1) Modbus TCP/IP option requires use of Modbus RTU port.
 (2) Some catalog number combinations may not be available. Please contact your local Eaton sales representative with any product configuration questions.
 ${ }^{(3)}$ Non-automatic (open transition) type does not support open-inphase transition.

[^2]: Notes
 (1) Horizontal is available only on ratings 150 A or less.

 Service entrance is not available on a manual design.

[^3]: Notes
 (1) 4000 A and 5000 A available as drawout configuration only.
 (2) UL 891 Listed.
 (3) Available on fixed-mounted units up to 3200 A .

[^4]: S = Standard, $0=$ Optional, C = Configurable

[^5]: S $=$ Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^6]: S = Standard, $0=$ Optional, C = Configurable

[^7]: S = Standard, $0=$ Optional, C = Configurable

[^8]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^9]: S = Standard, $0=$ Optional, C = Configurable

[^10]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^11]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^12]: S = Standard, $0=$ Optional, C = Configurable

[^13]: S = Standard, $0=$ Optional, C = Configurable

[^14]: S = Standard, $0=$ Optional, C = Configurable

