

Technical

Table of contents

NEMA configurations	Q-2
15A \& 20A straight blade	Q-2
30A, 50A, \& 60A straight blade	Q-3
15A, 20A \& 30A locking Q-4	Q-4, Q-5, Q-6
10A-30A Non-NEMA locking	Q-7
50A Non-NEMA locking	Q-7
Pin \& sleeve \& mechanical interlock configurations	s \quad Q-8
20A \& 30A watertight pin \& sleeve	Q-8
60A \& 100A watertight pin \& sleeve	Q-9
16A \& 32A watertight pin \& sleeve	Q-10
63A \& 125A watertight pin \& sleeve	Q-11
Horsepower ratings	Q-12
For NEMA configurations (plugs \& receptacles only)	nly) $\mathrm{Q}-12$
Common industry information	Q-13
Organization abbreviations glossary	Q-14
Organization acronyms	Q-15
Common UL \& CSA standards for wiring devices	Q-15
Select NEC® requirements for wiring devices	Q-16
Wire \& cable information	Q-17
Wire \& cable type abbreviations	Q-17
Diameter ranges of jacketed cord, per UL62	Q-17
Wiring diagrams	Q-18
By NEMA: 2-pole, 2-wire non-grounding	Q-18
By NEMA: 2-pole, 3-wire grounding	Q-18
By NEMA: 3-pole, 3-wire non-grounding	Q-18
By NEMA: 3-pole, 4-wire grounding	Q-18, Q-19
By NEMA: 4-pole, 4-wire non-grounding	Q-19
By NEMA: 4-pole, 5-wire grounding	Q-20
By NEMA: Receptacles \& GFCl	Q-21
By NEMA: Combination devices	Q-21
Switches	Q-22

Wiring diagrams (continued)	$\mathrm{Q}-22$
Manual \& motion controls	$\mathrm{Q}-22$
AC switches	$\mathrm{Q}-22$
Dimmers	$\mathrm{Q}-23, \mathrm{Q}-24, \mathrm{Q}-25$
Dimmers \& fan speed controls	$\mathrm{Q}-26, \mathrm{Q}-27$
Occupancy \& vacancy sensors	$\mathrm{Q}-28$
Occupancy \& vacancy sensor coverage areas	$\mathrm{Q}-29$
Timers	$\mathrm{Q}-29$
Manual contacts \& disconnect switches	$\mathrm{Q}-30$
Dimensional data	$\mathrm{Q}-31$
Switches dimensional data	$\mathrm{Q}-31$
Enclosures dimensional data	$\mathrm{Q}-32$
Lighting control basics	$\mathrm{Q}-33$
Snap-in receptacle panel cutouts	$\mathrm{Q}-34$
Attachon lampholder cutouts	$\mathrm{Q}-34$
Switch applications	$\mathrm{Q}-35$
Test requirements	$\mathrm{Q}-35$
Maximum loads	$\mathrm{Q}-36$
Switch applications or materials	$\mathrm{Q}-37$
Chemical resistant properties	$\mathrm{Q}-37$
of common materials	
NEMA \& IP enclosures	Q
Eaton wiring devices cleaning instructions	Q
NEMA \& IP enclosure ratings	$\mathrm{Q}-38$
Enclosure type cross reference:	Q -49
UEMA/UL/CSA	
USMCA/RoHS compliant	RoHS compliant criteria

Devices Comply with NEMA WD 1 - General Color Requirements for Wiring Devices and NEMA WD 6 - Wiring Devices Dimensional Specifications

en	Rating	츷를艺	15 A Straight blade			20A Straight blade		
$\frac{\ddot{0}}{\stackrel{0}{0}}$			Receptacle, connector \& flanged outlet		Plug \& flanged inlet	Receptacle, connector \& flanged outlet		Plug \& flanged inlet
	125V/AC	1	$\begin{aligned} & 4882 \diamond \\ & 736 \square \end{aligned}$					
	125V/AC	5				AH5362 $\square \mathrm{MC}$ AH5352 $\square \mathbf{M}$ 6362 -DM AHIG5362 ㅁIM $1533 \diamond Y$ 15W33 $\diamond W$ $5361 \Delta M$ TR6352 \square DR 6352 -D $5369 \mathrm{~N} \triangleright N C$ 5779C O AH5779C O AH5369 \diamond U AHTR5362 \square R WRSGF20 - 60W33 \triangle W 60W33DPLX $\square W$ AH5369Y $\diamond 0$ IG6362 पDI SGF20 \square GM TRBR20 \square R TRSGF20 \square RGM $4228 \diamond$		
	250V/AC	6	AH5662 $\square M$ 5661Δ AHIG5662 $\square I$ $6662 \square D$ 1549 $\diamond Y$ 15W49 $\diamond W$ IG5661 ΔI 5669N $\diamond N$ AH5679C O 5679C O	$\begin{aligned} & \text { AH5669 } \diamond \mathbf{U} \\ & 60 \mathrm{~W} 49 \triangle \mathbf{W} \\ & 60 \mathrm{~W} 49 \mathrm{DPLX} \square \mathbf{W} \\ & \text { AH5669Y } \diamond \mathbf{0} \\ & 826 \square \\ & 816 \Delta \\ & 4227 \diamond \\ & 5662 \square \\ & \text { AH8600 } \square \mathbf{M} \\ & 8610 \Delta \end{aligned}$	$\begin{aligned} & 5666 \mathrm{~N} \\ & 5678 \mathrm{C} \\ & \mathrm{AH} 666 \mathrm{Y} \\ & \mathrm{AH} 5666 \mathrm{O} \\ & 1449 \rightarrow \mathrm{Y} \\ & 14 \mathrm{~W} 49 \\ & 4866 \\ & \mathrm{AH} 8225 \mathrm{HG} \\ & \text { AH8225HGAC } \end{aligned}$	$\begin{aligned} & \text { AH5462 } \square \mathbf{M} \\ & 5461 \Delta \\ & \text { AHIG5462 } \square \mathrm{I} \\ & 6462 \square D \\ & 1548 \diamond \mathbf{Y} \\ & 15 W 48 \diamond \mathbf{W} \\ & \text { IG5461 } \Delta \mathrm{I} \\ & 5469 \mathrm{~N} \diamond \mathrm{~N} \\ & 5879 \mathrm{C} O \\ & \text { AH5879C O } \end{aligned}$	AH5469 $\diamond L$ $60 \mathrm{~W} 48 \triangle W$ 60W48DPLX \square W AH5469Y $\diamond 0$ 815 $4229 \diamond$ 5462 AH8400 $\square \mathbf{M}$ IG8400 \quad II 8410Δ	
	277V/AC	7	$5302 \square$	$\left(\begin{array}{c} \nabla a \\ 0 \\ 0 \\ w \\ 7-15 R \end{array}\right)$			$\left(\begin{array}{c} \nabla 0 \\ 0 \\ 0 \\ 7-20 R \end{array}\right.$	$7624 \mathrm{~N} \leqslant \mathrm{~L}$
	125/250V/AC	10				805Δ	$\begin{array}{cc} {\left[\begin{array}{c} a \\ 0 \\ y \\ x \\ x \end{array}\right.} \\ 10-208 \end{array}$	$9151 \mathrm{~N} \leftrightarrow \mathrm{~L}$
	125/250V/AC	14				5759 -		$\begin{gathered} 14-20 \mathrm{P} \\ x_{\mathrm{w}} \mathrm{IV} \\ \hline 1 \end{gathered}$
	$30250 \mathrm{~V} / \mathrm{AC}$	15						
	$\begin{gathered} 3 \varnothing \mathrm{Y} \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	18						$7251 \mathrm{~N}$

Due to spatial constraints not all products are shown on this page. For additional product options in these configurations consult appropriate sections in this buyers guide.
Straight blade legend: How to use the chart

Core catalog number color indicates a device's grade:

BLACK = Extra heavy-duty industrial specification grade
BLUE $=$ Commercial specification grade

Device body:

\square Duplex receptacle	\diamond Connector	Open shape has holes (receptacles, connectors, outlets)
Δ Single receptacle	Flanged inlet	Closed shape has blades (plugs, inlets)
Plug;	\bigcirc Flanged outlet	
Compliances, specifications and availability are subject to change without notice.		

ORANGE = Heavy-duty construction grade GREEN = Hospital specification grade

Device type:

A Angled	L Safety grip
D Decorator	N Auto grip
G GFCI	O Quick grip
H Compact	R Tamper resistant
I Isolated ground	S
Surface	

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device options available:

C Corrosion resistant
M ArrowLink modular
W Watertight
Y Severe duty insulated

U Ultra grip

CHS Controls AB
Tel +46 423861 00, Fax +4642386129
chs@chscontrols.se www.chscontrols.se

	Rating		30A Straight blade		50A Straight blade		60A Straight blade	
			Receptacle, connector \& flanged outlet	Plug \& flanged inlet	Receptacle, connector \& flanged outlet	Plug \& flanged inlet	Receptacle, connector \& flanged outlet	Plug \& flanged inlet
	125V/AC	1						
	125V/AC	5	$\begin{aligned} & 6716 N \diamond N \\ & 1233 \Delta \\ & 5716 N \Delta \end{aligned}$	$\begin{aligned} & \text { 5717AN } \rightarrow \text { AN } \\ & \text { 5717N } \rightarrow N \\ & \text { 5717NFI ON } \\ & \text { S41 } \leftarrow A \\ & \\ & \end{aligned}$				
	250V/AC	6	$6700 \mathrm{~N} \diamond \mathbf{N}$ $5700 \mathrm{~N} \Delta$ $1232 \Delta \mathbf{S}$ 1234Δ			5710AN \rightarrow AN $5710 \mathrm{~N} \leftrightarrow N$ 5710 NFI ON S42 A		
	277V/AC	7	$\begin{aligned} & 6795 N \diamond N \\ & 5795 N \Delta \end{aligned}$		$6796 \mathrm{~N} \diamond \mathrm{~N}$	5705AN $\&$ AN $5705 \mathrm{~N} \rightarrow \mathrm{~N}$ $5705 \mathrm{NFI} \bullet \mathrm{N}$		
	125/250V/AC	10	$\begin{aligned} & 9341 \mathrm{~N} \diamond N \\ & 38 \mathrm{~B} \Delta \\ & 125 \Delta \mathbf{S} \end{aligned}$					
	125/250V/AC	14					$9460 \mathrm{~N} \triangle$	
	30 250V/AC	15	$8430 \mathrm{~N} \Delta$	$\begin{aligned} & 8432 A N \not A N \\ & 8432 N \not N \end{aligned}$	$\text { 8450N } \Delta$	$\begin{aligned} & 8452 A N \not A N \\ & 8452 N \not N \end{aligned}$	$8460 N \Delta$	$\begin{aligned} & \text { AH8462AN AN } \\ & \text { AH8462N } N \end{aligned}$
	$\begin{gathered} 3 ø \mathrm{Y} \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	18					$5515 \mathrm{~N} \Delta$	

Due to spatial constraints not all products are shown on this page. For additional product options in these configurations consult appropriate sections in this buyers guide.
Straight blade legend: How to use the chart

Core catalog number color \quad BLACK = Extra heavy-duty industrial specification grade indicates a device's grade:
BLUE = Commercial specification grade

Device body:

\square Duplex receptacle	\diamond Connector	Open shape has holes (receptacles, connectors, outlets)
Δ Single receptacle	Flanged inlet	Closed shape has blades (plugs, inlets)
\qquad Plug;	O Flanged outlet	
Compliances, specifications and availability are subject to change without notice.		

ORANGE = Heavy-duty construction grade GREEN = Hospital specification grade

Device type:

A Angled	L Safety grip
D Decorator	N Auto grip
G GFCl	0 Quick grip
H Compact	R Tamper resistant
I Isolated ground	S Surface
	U Ultra grip

U Ultra grip

$\stackrel{40}{0.0}$	Rating		15A Locking			
			Receptacle, connector \& flanged outlet		Plug \& flanged inlet	
	125V/AC	ML1	$\begin{aligned} & 7464 \mathrm{~N} \diamond \\ & 7427 \mathrm{~N} \diamond \\ & 7468 \bigcirc \end{aligned}$	$\underbrace{08}_{\text {MLIR }}$	$7465 N$$7428 N$$7479 N$$\quad$$7429 N$ 7466 7467	(1)
	125V/AC	L1	$\begin{aligned} & \text { CWL115FO } \bigcirc 7506 \diamond \\ & \text { 7540 } \\ & \text { CWL115R } \triangle \end{aligned}$	$\underset{\substack{\Delta \\ \text { L1-15R } \\ \hline \\ \hline}}{2}$	$\begin{aligned} & \text { CWL115FI } \\ & 7546 \\ & 7548 \end{aligned}$	$\underset{\substack{\square \\ L 1-15 P}}{\sim}$
	250V/AC	L2				
	125V/AC	ML2	$\begin{aligned} & 7593 \diamond \\ & 7596 \bigcirc \\ & 7596 \mathrm{~N} O \end{aligned}$	$\overbrace{\text { ML2R }}^{0}$	$\begin{aligned} & 7594 \\ & 7595 \\ & 7595 N \end{aligned}$	$(1 \circ)$
	125V/AC	L5	CWL515C $\diamond L$ CWL515CAN $\diamond A L$ CWL515FO CWL515R Δ IG4700 \square I IGL515R ΔI 65W47 ΔW 65W47DPLX $\square W$ 25W47 $\diamond W$ 4731NCR $\diamond C N$ CR4700 $\square \mathbf{C}$ 4700 4731N $\diamond N$ $5792 \square$ CR5792 $\square \mathbf{C}$	$\begin{gathered} a^{6} a^{m} \\ L 5-15 R \end{gathered}$	```CWL515FI CWL515P - L CWL515PAN AL 24W47 <W 4721N N 4721NCR CN```	w^{6}
	250V/AC	L6	CWL615C \diamond L CWL615FO O CWL615R Δ 65W49DPLX $\square \mathbf{W}$ IGL615R $\Delta \mathbf{I}$ $25 W 49 \diamond \mathbf{W}$ 6566N $\diamond \mathbf{N}$ $65 W 49 \Delta \mathbf{W}$ $6580 \square$		```CWL615FI CWL615P L 24W49 *W 6565N N```	$\underbrace{r_{r}^{x} t_{a}}_{\text {L6-15P }}$
	277V/AC	L7	CWL715C $\diamond L$ $4750 \square$ CWL715R Δ $2534 \diamond Y$ 25W34 $\diamond W$ CWL715FO O 65W34 ΔW 65W34DPLX $\square W$ $4772 N \diamond N$	$\begin{aligned} & \text { wo } \\ & \begin{array}{l} \text { B } \\ 6 \\ \hline \end{array} \\ & \text { L7-15R } \end{aligned}$	```CWL715FI CWL715P L 24W34 W 4771N N```	$\underbrace{c^{w} \wedge_{0}}_{\text {L7-15P }}$
	480V/AC	L8				
	600V/AC	L9				
	125/250V/AC	ML3	$\begin{aligned} & 7484 \diamond \\ & 7487 \bigcirc \\ & 7487 \mathrm{~N} O \end{aligned}$	$\underbrace{(100)}_{\text {ML3R }}$	$\begin{aligned} & 7485 \\ & 7486 \\ & 7486 \mathrm{~N} \end{aligned}$	
	125/250V/AC	L10				
	30 250V/AC	L11				
	30 480V/AC	L12				
	$30600 \mathrm{~V} / \mathrm{AC}$	L13				

Locking device legend: How to use the chart

Core catalog number color
indicates a device's grade:

BLACK = Extra heavy-duty industrial specification grade
A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device type:

A	Angled	L Safety grip
C	Corrosion resistant	N Auto grip

Device body:

| \square | Duplex receptacle | Δ | Single receptacle |
| :--- | :--- | :--- | :--- | | Open shape has holes |
| :--- |
| (receptacles, connectors, outlets) |

NEMA configurations for select devices
Devices comply with NEMA WD 1 - general color requirements for Wiring Devices and NEMA WD 6 - Wiring Devices Dimensional Specifications

	Rating		20A Locking		30A LOCKing	
			Receptacle, connector \& flanged outlet	Plug \& flanged inlet	Receptacle, connector, \& flanged outlet	Plug \& flanged inlet
	125V/AC	ML1				
	125V/AC	L1				
	250V/AC	L2	CWL220C $\diamond L$ CWL220FO O CWL220R \triangle L2-20R	$\begin{array}{ll} \mathrm{CWL220P} \\ \mathrm{CWL22OP}-6 \\ \mathrm{ZL} & - \\ \text { L2-20P } \end{array}$		
	125V/AC	ML2				
	125V/AC	L5	AHCL520C $\diamond U$ L520CW $\diamond W$ AHCL520FO O L520RW ΔW AHL520CBK $\diamond U$ CRL520C $\diamond C L$ AHCL520R Δ CRL520R ΔC B^{W} AHIGL520R ΔI	$\begin{aligned} & \text { AHCL520FI } \\ & \text { AHCL520P } \\ & \text { AHL520PBK } \\ & \text { L520PW } \diamond W \\ & \text { CRL520P } \end{aligned}$		
	240V/AC	L25			AHL2530C \diamond $\left(\begin{array}{rl}\nabla_{6} \\ \text { AHL2530R } \Delta & \\ \text { IGL2530R } \Delta & \\ \text { L25-30R } \\ \hline\end{array}\right]$	AHL2530P
	250V/AC	L6		AHCL620FI AHCL620P L620PW $-W$ CRL620P -CL L6-20P	AHCL630C $\diamond U$ L630CW $\diamond W$ AHCL630R $\Delta \mathbf{C}$ L630RW ΔW AHCL630FO O CRL630C \diamond CL AHIGL630R ΔI CRL630R ΔC L6-30R	AHCL630FI AHCL630P $-U$ L630PW *W CRL630P CL L6-30P
	277V/AC	L7	AHCL720C \diamond U AHIGL720R ΔI AHCL720FO L720CW $\diamond W$ AHCL720R \triangle L720RW $\triangle W$	$\begin{aligned} & \text { AHCL720FI } \\ & \text { AHCL720P U } \\ & \text { L72OPW } \end{aligned}$	AHCL730C $\diamond U$ AHIGL730R ΔI (T) AHCL730R Δ L730CW $\diamond W$ ai AHCL730FO O L730RW ΔW L7-30R	AHCL730FI AHCL730P L730PW *W L7-30P
	347V/AC	L24	L2420R Δ			
	480V/AC	L8	AHCL820C $\diamond \mathbf{U}$ AHIGL820R ΔI AHCL820R Δ L820RW $\triangle W$ AHCL820FO O L820CW $\diamond W$ L8-20R	$\begin{aligned} & \text { AHCL820FI } \\ & \text { AHCL820P }<\mathrm{U} \\ & \text { L820PW } \leqslant W \end{aligned}$		AHCL830FI AHCL830P $-U$ L830PW -W
	600V/AC	L9	CWL920C \diamond CWL920FO O CWL920R Δ	CWL920FI CWL920P	CWL930C \diamond CWL930FO O CWL930R Δ	CWL930FI CWL930P
	125/250V/AC	ML3				
	125/250V/AC	L10	AHCL1020FO O L1020RW ΔW AHCL1020C $\diamond \mathbf{U}$ L1020CW $\diamond W$ AHCL1020R Δ 	$\begin{aligned} & \text { AHCL1020FI } \\ & \text { AHCL1020P } \\ & \text { L1020PW } \end{aligned}$	AHCL1030FO O L1030CW $\diamond W$ AHCL1030C $\diamond U$ L1030RW $\triangle W$ AHCL1030R Δ L10-30R	$\begin{aligned} & \text { AHCL1030FI } \\ & \text { AHCL1030P } \\ & \text { L1030PW } \end{aligned}$
	30 250V/AC	L11	AHCL1120FO O L1120RW ΔW AHCL1120C $\diamond \mathbf{U}$ L1120CW $\diamond W$ $\times B$ AHCL1120R \triangle L11-20R	$\begin{aligned} & \text { AHCL1120FI } \\ & \text { AHCL1120P } \\ & \text { L1120PW } \end{aligned}$	AHCL1130FO O L1130CW $\diamond W$ AHCL1130C $\diamond U$ L1130RW ΔW AHCL1130R Δ	AHCL1130FI AHCL1130P $-U$ L1130PW *W L11-30P
	30 480V/AC	L12	$\begin{aligned} & \text { CWL1220C } \diamond \\ & \text { CWL1220FO O } \\ & \text { CWL1220R } \triangle \end{aligned}$	$\begin{aligned} & \text { CWL1220FI } \\ & \text { CWL1220P } \end{aligned}$	$\begin{aligned} & \text { CWL1230C } \diamond \\ & \text { CWL1230FO ○ } \\ & \text { CWL1230R } \triangle \end{aligned}$	CWL1230FI CWL1230P
	$30600 \mathrm{~V} / \mathrm{AC}$	L13			CWL1330C \diamond CWL1330FO O CWL1330R Δ	CWL1330FI CWL1330P

Locking device legend: How to use the chart

Core catalog number color indicates a device's grade:

BLACK = Extra heavy-duty industrial specification grade

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device body:

| \square | Duplex receptacle | Δ | Single receptacle |
| :--- | :--- | :--- | :--- | | Open shape has holes |
| :--- |
| (receptacles, connectors, outlets) |

Device type:

| A Angled | L Safety grip | U Ultra grip |
| :--- | :--- | :--- | :--- |
| C Corrosion resistant | N Auto grip | W Watertight |
| I Isolated ground | P Pro grip | Z With lid or cover |

Compliances, specifications and availability are subject to change without notice.
Eaton.com
Eaton.com/wiringdevices

	Rating		20A Locking			30A Locking		
			Receptacle, connec \& flanged outlet		Plug \& flanged inlet	Receptacle, conne \& flanged outlet		Plug \& flanged inlet
	125/250V/AC	114	AHCL1420C $\diamond U$ AHL1420C $\diamond U$ AHCL1420FO O AHL1420FOBK O AHCL1420R \triangle IGL1420R ΔI	L1420CW $\diamond W$ CRL1420C $\diamond C L$ CRL1420R $\triangle C$ L1420RW ΔW 6406BK O \qquad L14-20R	AHCL1420FI AHCL1420PBK $>U$ AHL1420FIBK AHCL1420P L1420PW *W CRL1420P ©CL 6405BK	AHCL1430C \diamond U AHCL1430R \triangle AHCL1430FO O AHIGL1430R ΔI L1430CW $\diamond W$	L1430RW \triangle W CRL1430C $\diamond C L$ CRL1430R $\triangle C$	AHCL1430FI \bullet CRL1430P -CL AHCL1430P \downarrow L1430PW \downarrow W 6512BK
	$30250 \mathrm{~V} / \mathrm{AC}$	L15	AHCL1520C \diamond U AHL1520CBK \diamond U AHCL1520FO O AHIGL1520R ΔI AHCL1520R Δ	L1520CW $\diamond W$ L1520RW ΔW CRL1520C $\diamond C L$ CRL1520R $\triangle C$	AHCL1520FI AHCL1520P AHL1520PBK \leqslant U L1520PW *W CRL1520P ©CL	AHCL1530C \diamond U AHCL1530R \triangle AHCL1530FO O AHIGL1530R ΔI		CRL1530P CL AHCL1530FI AHCL1530P L1530PW
	30 480V/AC	L16	AHCL1620C $\diamond U$ AHCL1620FO O AHCL1620R Δ AHIGL1620R ΔI L1620CW $\diamond W$ L1620RW $\triangle W$	CRL1620C $\diamond C L$ AHL1620CBK $\diamond U$ L16-20R	AHCL1620FI AHCL1620P $\geqslant U$ AHL1620PBK \leqslant L1620PW *W CRL1620P ©CL AHL1620FI L16-20P	AHCL1630C $\diamond U$ AHCL1630R \triangle AHCL1630FO O L1630CW $\diamond W$ L1630RW ΔW		CRL1630P -CL AHCL1630FI AHCL1630P L1630PW *W
	$30600 \mathrm{~V} / \mathrm{AC}$	L17				AHCL1730C $\diamond U$ AHCL1730R Δ AHCL1730FO 0	L1730CW $\diamond W$ L1730RW ΔW	
	$\begin{gathered} 3 \sigma \mathrm{Y} \\ \text { 120/208V/AC } \end{gathered}$	L18	AHCL1820C $\diamond U$ AHCL1820FO O AHCL1820R Δ	L1820CW \diamond W L1820RW $\triangle W$ AHL1820FO O L18-20R	AHCL1820FI AHCL1820P $\downarrow \cup$ L1820PW \leqslant W	AHCL1830C $\diamond U$ AHCL1830R \triangle AHCL1830FO ○	L1830CW $\diamond W$ L1830RW $\triangle W$ \qquad 18-30R	
	$\begin{gathered} 3 ฮ \mathrm{Y} \\ \text { 277/480V/AC } \end{gathered}$	L19	AHCL1920C \diamond U AHCL1920FO O AHCL1920R Δ		AHCL1920FI AHCL1920P $\vee U$ L1920PW *W L19-20P	AHCL1930C $\diamond U$ AHCL1930R \triangle AHCL1930FO 0		AHCL1930P $>\mathrm{U}$ AHCL1930FI L1930PW *W L19-30P
	$\begin{gathered} 3 ฮ \mathrm{Y} \\ 347 / 600 \mathrm{~V} / \mathrm{AC} \end{gathered}$	120	AHCL2020C \diamond U AHCL2020FO ○ AHCL2020R Δ		AHCL2020FI AHCL2020P $\downarrow \cup$ L2020PW \leqslant W $\xrightarrow[120-20 \mathrm{P}]{2}$	AHCL2030C $\diamond U$ AHCL2030R \triangle AHCL2030FO O		
	$\begin{gathered} 3 ø \mathrm{Y} \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	L21	AHCL2120C \diamond U AHCL2120FO O AHCL2120R Δ AHIGL2120R ΔI L2120CW $\diamond W$	AHL2120CBK $\diamond U$ AHL2120CF \diamond U L2120RW ΔW 221-20R	AHCL2120FI AHCL2120P \downarrow AHL2120PBK L2120PW \leqslant W AHL2120PF - L L21-20P	AHCL2130C $\diamond U$ AHCL2130R Δ L2130CW $\diamond W$ L2130RW \triangle W AHL2130CF \diamond U	AHL2130FO O AHIGL2130R ΔI L21-30R	AHCL2130FI AHCL2130P $\bullet U$ L2130PW *W L2130PF - L L21-30P
	$\begin{gathered} 30 \mathrm{Y} \\ 240 / 415 \mathrm{~V} \end{gathered}$	L26				AHCL2630C \diamond AHCL2630R \triangle IGL2630R Δ		
	$\begin{gathered} 3 \mathrm{gY} \\ \text { 277/480V/AC } \end{gathered}$	122	AHCL2220C $\diamond U$ AHCL2220R \triangle AHIGL220R ΔI AHCL2220FO O	L2220CW $\diamond W$ L2220RW $\triangle W$ L22-20R	AHCL2220FI AHCL2220P \leqslant L2220PW \leqslant W	AHCL2230C $\diamond U$ AHCL2230R Δ AHIGL2230R ΔI AHCL2230FO O	L2230CW $\diamond W$ L2230RW \triangle W L22230CF \diamond L	$\begin{aligned} & \text { AHCL2230FI } \\ & \text { AHCL2230P } \\ & \text { L2230PW } \quad \mathrm{w} \\ & \text { L2230PF } \end{aligned}$
	347/600V/AC	L23	AHCL2320C \diamond U AHCL2320R \triangle AHIGL2320R ΔI	AHCL2320FO O L2320CW $\diamond W$ L2320RW $\triangle W$	AHCL2320FI AHCL2320P $\vee U$ L2320PW *W	AHCL2330C $\diamond U$ AHCL2330R \triangle AHIGL2330R ΔI L2330CW $\diamond W$ L2330RW ΔW	AHCL2330FO O	AHCL2330FI AHCL2330P $\vee U$ L2330PW \leqslant W

Locking device legend: How to use the chart
Core catalog number color
BLACK = Extra heavy-duty industrial specification grade

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device body:

| \square | Duplex receptacle | Δ | Single receptacle |
| :--- | :--- | :--- | :--- | | Open shape has holes |
| :--- |
| (receptacles, connectors, outlets) |
| \diamond Plug |

\square Duplex receptacle
\diamond Connector
Δ Single receptacle
O Flanged outlet

Open shape has holes (receptacles, connectors, outlets) Closed shape has blades (plugs, inlets)

Device type:

A	Angled	L Safety grip
C	Corrosion resistant	N Ultra grip
I Auto grip	Isolated ground	P Pro grip

Compliances, specifications and availability are subject to change without notice.

NEMA configurations for select devices
Devices comply with NEMA WD 1 - general color requirements
for Wiring Devices and NEMA WD 6 - Wiring Devices Dimensional Specifications

$\begin{aligned} & \mathscr{4} \\ & \stackrel{y y y}{3} \\ & \dot{8} \\ & \frac{0}{0} \end{aligned}$	Rating	$\begin{gathered} \text { 10A - 30A } \\ \text { Non-NEMA locking } \end{gathered}$	
		Receptacle, connector, \& flanged outlet	Plug \& flanged inlet
	$\begin{gathered} 10 / 15 \mathrm{~A} \\ 125 / 250 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & 4755 \diamond \mathrm{~L} \\ & 7565 \mathrm{~N} \diamond \mathrm{~N} \\ & 7580 \square \\ & 7582 \Delta \end{aligned}$	$\begin{aligned} & 4767>L \\ & 4767 \mathrm{AN}>\mathrm{AL} \\ & 7567 \mathrm{~N} \end{aligned}$
	$\begin{gathered} 20 \mathrm{~A} \\ 125 / 250 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & \text { 7310B } \Delta \\ & \text { 7314C } \diamond L \\ & \text { 7314CW } \diamond W \\ & \text { 7314RW } \Delta W \\ & \text { 7328N } O \end{aligned}$	$\begin{aligned} & 7327 \mathrm{~N} \bullet \\ & 9965 \mathrm{C} \text { L } \\ & 9965 \mathrm{PW} \bullet W \end{aligned}$
	$\begin{gathered} 30 \mathrm{~A} \\ 125 / 250 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & \text { AH3330-2 } \Delta \\ & \text { 3333CW } \diamond W \\ & \text { 3333RW } \Delta W \\ & \text { AH3333N } \diamond U \\ & \text { AH3336N } O \end{aligned}$	$\begin{aligned} & \text { AH3331N U } \\ & 3331 P W \diamond W \\ & 3337 N \end{aligned}$
	$\begin{gathered} 20 \mathrm{~A} 30 \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & \text { 7409N } O \\ & \text { 7410B } \Delta \\ & \text { 7413C } \diamond \text { L } \\ & \text { 7413CW } \diamond W \\ & \text { 7413RW } \Delta W \end{aligned}$	$\begin{aligned} & \text { 7408N } \\ & \text { 7411C } \\ & \text { 7411PW } \end{aligned}$
	$\begin{gathered} 30 A 30 \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & 3430 \triangle \\ & 3433 C W \diamond W \\ & \text { AH3433N } \diamond U \\ & 3433 R W \triangle W \\ & 3436 N ~ O \end{aligned}$	$\begin{aligned} & \text { AH3431N U } \\ & 3431 P W ~ W \\ & 3434 N \end{aligned}$
ㅁㅡㅡ 를 른 3 耍 京	$\begin{gathered} \text { 20/10A } \\ 250 / 600 \mathrm{~V} / \mathrm{AC} \end{gathered}$	$\begin{aligned} & \text { AH3523BK } \diamond \mathrm{U} \\ & \text { 3525BK O } \end{aligned}$	$\begin{aligned} & \text { AH3521BK }>U \\ & 3524 \mathrm{BK} \end{aligned}$

$\begin{aligned} & \mathscr{0} \\ & \stackrel{L}{3} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	Rating	50A Non-NEMA locking			
		Receptacle \& connector		Plug, flanged inlets \& hull inlet	
	125V/AC Marine corrosion resistant			$\begin{aligned} & \text { 63CR61EX }>P \\ & \text { 63CR61 } \rightarrow T \end{aligned}$	
	125V/AC California standard	$\begin{aligned} & \text { CS6360EX } \diamond P \\ & \text { CS6360 } \diamond T \\ & \text { CS6370 } \Delta \end{aligned}$	Receptacle Non-NEMA	```CS6361EX PP CS6361 T CS6377 CS6378 OZ```	$$
	250V/AC California standard	$\begin{aligned} & \text { CS8264EX } \diamond P \\ & \text { CS8264 } \diamond T \\ & \text { CS8269 } \Delta \end{aligned}$	Non-NEMA	$\begin{aligned} & \text { CS8265EX P } \\ & \text { CS8265 T } \\ & \text { CS8275 } \\ & \text { CS8277 Z } \end{aligned}$	$\underbrace{\substack{x}}_{\substack{\text { Plug } \\ \text { Non-NEMA }}}$
	250V/DC 600V/AC	$\begin{aligned} & 3762 E X \diamond P \\ & 3762 \diamond T \\ & 3771 \Delta \end{aligned}$	Receptacle Non-NEMA	$\begin{aligned} & 3763 E X \bullet P \\ & 3763 \bullet T \\ & 3777 \bullet \\ & 3767 \text { T } \end{aligned}$	
	480V/AC California standard	$\begin{aligned} & \text { CS8464EX } \diamond P \\ & \text { CS8464 } \diamond T \\ & \text { CS8469 } \Delta \end{aligned}$	Receptacle Non-NEMA	```CS8465EX < P CS8465 T CS8475 CS8477 OZ```	
	125/250V/AC Marine corrosion resistant	$\begin{aligned} & \text { 63CR64EX } \diamond P \\ & \text { 63CR64 } \diamond T \\ & \text { 63CR69 } \Delta \end{aligned}$	Receptacle Non-NEMA	$\begin{aligned} & \text { 63CR65EX }>P \\ & \text { 63CR65 } \rightarrow T \end{aligned}$	$\underset{\substack{\text { Plug } \\ \text { Non-NEMA }}}{\substack{\text { N }}}$
	125/250V/AC California standard	$\begin{aligned} & \text { CS6364EX } \diamond P \\ & \text { CS6364 } \diamond T \\ & \text { CS6369 } \Delta \end{aligned}$		$\begin{aligned} & \text { CS6365EX P P } \\ & \text { CS6365 T } \\ & \text { CS6375 } \\ & \text { CS6376 Z } \end{aligned}$	
	30 250V/AC California standard	$\begin{aligned} & \text { CS8364EX } \diamond P \\ & \text { CS8364 } \diamond T \\ & \text { CS8369 } \Delta \end{aligned}$	Receptacle Non-NEMA	$\begin{aligned} & \text { CS8365EX } * P \text { P } \\ & \text { CS8365 T } \\ & \text { CS8375 } \\ & \text { CS8377 } \quad \text { Z } \end{aligned}$	
	250V/DC 600V/AC	$\begin{aligned} & 3764 E X \diamond P \\ & 3764 \diamond T \\ & 3769 \Delta \end{aligned}$	Receptacle Non-NEMA	$\begin{aligned} & 3765 \mathrm{EX} \bullet P \\ & 3765 \bullet T \\ & 3775 \bullet \\ & 3768 \bullet Z \end{aligned}$	
	250V/DC 600V/AC	$\begin{aligned} & 7764 E X \diamond P \\ & 7764 \diamond T \\ & 7379 \Delta \end{aligned}$		$\begin{aligned} & 7765 \mathrm{EX} \rightarrow P \\ & 7765 \leftrightarrow T \\ & 7958 \text { T } \\ & 7968 \text { Z } \end{aligned}$	
	30 480V/AC California standard	$\begin{aligned} & \text { CS8164EX } \diamond P \\ & \text { CS8164 } \diamond T \\ & \text { CS8169 } \triangle \end{aligned}$	Receptacle Non-NEMA	$\begin{aligned} & \text { CS8165EX P } \\ & \text { CS8165 T } \\ & \text { CS8175 © } \\ & \text { CS8177 } \end{aligned}$	$\underbrace{l_{1}}_{\substack{2 \\ N^{\circ} \\ \text { Plug } \\ \text { Non-NEMA }}}$

Locking device legend: How to use the chart

Core catalog number color indicates a device's grade:

BLACK = Extra heavy-duty industrial specification grade

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device body:

| \square | Duplex receptacle | Δ | Single receptacle |
| :--- | :--- | :--- | :--- | | Open shape has holes |
| :--- |
| (receptacles, connectors, outlets) |

Device type:

A Angled	L Safety grip	U Ultra grip
C Corrosion resistant	N Auto grip	W Watertight
I Isolated ground	P Pro grip	Y Severe duty insulated

Z With lid or cover

	Rating	20A Watertight pin \& sleeve				30A Watertight pin \& sleeve			
		Receptacle, connector \& mechanical interlocks		Plug \& inlet		Receptacle, connector \& mechanical interloc		Plug \& inlet	
	125V	CD320HMI4W >OX AH320R4W \triangle AH320C4W \diamond		$\begin{aligned} & \text { AH320P4W } \\ & \text { AH320B4W } \end{aligned}$		CD330MI4W >0 AH330R4W \triangle AH330C4W \diamond		AH330P4W AH330B4W	\bigcirc
	250V	CD320HMI6W >OX AH320R6W \triangle AH320C6W \diamond		AH320P6W AH320B6W		CD330MI6W >0 CD330MIF6W >E AH330R6W \triangle AH330C6W \diamond		AH330P6W AH330B6W	\because
	480V/AC	CD320HMI7W >QX AH320R7W \triangle AH320C7W \diamond		$\begin{aligned} & \text { AH320P7W } \\ & \text { AH320B7W } \end{aligned}$	\because	CD330MI7W >0 AH330R7W \triangle AH330C7W \diamond		$\begin{aligned} & \text { AH330P7W } \\ & \text { AH330B7W } \end{aligned}$	\bigcirc
	125/250V/AC	CD420HMI12W >OX AH420R12W Δ AH420C12W \diamond		AH420P12W AH420B12W		CD430MI12W >0 AH430R12W Δ AH430C12W \diamond		$\begin{aligned} & \text { AH430P12W } \\ & \text { AH430B12W } \end{aligned}$	\because
	30 250V/AC	CD420HMI9W >OX AH420R9W \triangle AH420C9W \diamond		AH420P9W AH420B9W		CD430MI9W >0 CD430MIB9W >F CD430MICB9W >B CD430MIF9W >E AH430R9W \triangle AH430C9W \diamond	(0)	AH430P9W AH430B9W	\because
	$30480 \mathrm{~V} / \mathrm{AC}$	CD420HMI7W >OX CD420MIB7W $>$ F CD420MICB7W >B AH420R7W \triangle AH420C7W \diamond		$\begin{aligned} & \text { AH420P7W } \\ & \text { AH420B7W } \end{aligned}$		CD430MI7W >0 CD430MIB7W $>$ F CD430MICB7W >B CD430MIF7W >E AH430R7W \triangle AH430C7W \diamond		AH430P7W AH430B7W	\because
	$30600 \mathrm{~V} / \mathrm{AC}$	CD420HMI5W >OX AH420R5W \triangle AH420C5W \diamond		$\begin{aligned} & \text { AH420P5W } \\ & \text { AH420B5W } \end{aligned}$	\because	CD430MI5W >0 CD430MIF5W >E AH430R5W \triangle AH430C5W \diamond	(0)	AH430P5W AH430B5W	\because
	$\begin{gathered} 30 \mathrm{y} \\ \text { 120/208V/AC } \end{gathered}$	CD520HMI9W >OX AH520R9W \triangle AH520C9W \diamond		AH520P9W AH520B9W		CD530MI9W >0 AH530R9W \triangle AH530C9W \diamond		AH530P9W AH530B9W	
	$\begin{gathered} 30 \mathrm{Y} \\ \text { 277/480V/AC } \end{gathered}$	$\begin{aligned} & \text { AH520R7W } \triangle \\ & \text { AH520C7W } \diamond \end{aligned}$		$\begin{aligned} & \text { AH520P7W } \\ & \text { AH520B7W } \end{aligned}$		CD530MI7W >0 AH530R7W \triangle AH530C7W \diamond	(o)	$\begin{aligned} & \text { AH530P7W } \\ & \text { AH530B7W } \end{aligned}$	
	$\begin{gathered} 30 \mathrm{Y} \\ 347 / 600 \mathrm{~V} / \mathrm{AC} \end{gathered}$	AH520R5W \triangle AH520C5W		AH520P5W AH520B5W		CD530MI5W >0 AH530R5W \triangle AH530C5W		AH530P5W AH530B5W	\because

Locking device legend: How to use the chart

Core catalog number color BLACK = Extra heavy-duty industrial specification grade
indicates a device's grade:

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device body:

| \square | Duplex receptacle | \bullet | Flanged inlet |
| :--- | :--- | :--- | :--- | | Open shape has holes |
| :--- |
| (receptacles, connectors, outlets) |
| Closed shape has blades |
| (plugs, inlets) |

Device type:

A	Angled	E	Fusible
B	Circuit breaker option	F	Fuse option

Compliances, specifications and availability are subject to change without notice.

CHS Controls AB

Pin \& sleeve and mechanical interlock configurations
North American Standard Amp Rating

	Rating	60A Watertight pin \& sleeve				100A Watertight pin \& sleeve			
		Receptacle, connector \& mechanical interlock		Plug \& inlet		Receptacle, connector \& mechanical interlocks		Plug \& inlet	
	125V	AH360R4W \triangle AH360C4W \diamond	0	AH360P4W AH360B4W		AH3100R4W Δ AH3100C4W \diamond		AH3100P4W AH3100B4W	\because
	250V	CD360MI6W >0 CD360MIF6W >E AH360R6W \triangle AH360C6W \diamond		$\begin{aligned} & \text { AH360P6W } \\ & \text { AH360B6W } \end{aligned}$		CD3100MI6W >0 AH3100R6W \triangle AH3100C6W \diamond		AH3100P6W AH3100B6W	\because
	480V/AC	CD360MI7W >0 AH360R7W Δ AH360C7W \diamond	0	$\begin{aligned} & \text { AH360P7W } \\ & \text { AH360B7W } \end{aligned}$		CD3100MI7W >0 AH3100R7W Δ AH3100C7W \diamond	0	AH3100P7W AH3100B7W -	0
	125/250V/AC	CD460MI12W >0 AH460R12W Δ AH460C12W \diamond	(00)	AH460P12W AH460B12W -		CD4100MI12W >0 AH4100R12W Δ AH4100C12W $<$ AH4100R12W-15 $\triangle A$		AH4100P12W AH4100B12W	\because
	$30250 \mathrm{~V} / \mathrm{AC}$	CD460MI9W >0 CD460MICB9W >B CD460MIF9W >E AH460R9W Δ AH460C9W \diamond	0	AH460P9W AH460B9W		CD4100MI9W >0 AH4100R9W \triangle AH4100C9W \diamond		AH4100P9W AH4100B9W	\because
	30 480V/AC	CD460MI7W >0 CD460MIB7W >F CD460MICB7W >B CD460MIF7W >E AH460R7W Δ AH460C7W \diamond		AH460P7W AH460B7W		CD4100MI7W $>\mathbf{O}$ AH4100R7W Δ AH4100C7W AH4100R7W-15 $\triangle A$	(0)	AH4100P7W AH4100B7W O	\because
	$30600 \mathrm{~V} / \mathrm{AC}$	CD460MI5W >0 CD460MICB5W >B CD460MIF5W >E AH460R5W \triangle AH460C5W \diamond		AH460P5W AH460B5W		CD4100MI5W $>\mathbf{Q}$ AH4100R5W Δ AH4100C5W \diamond AH5100R9W-15 $\triangle A$	o	AH4100P5W AH4100B5W	\because
	$\begin{gathered} 3 \nexists \mathrm{Y} \\ 120 / 208 \mathrm{~V} / \mathrm{AC} \end{gathered}$	CD560MI9W >0 CD560MIF9W >E AH560R9W \triangle AH560C9W \diamond AH560R9W-15 $\triangle A$	(0)	AH560P9W AH560B9W		CD5100MI9W >0 AH5100R9W Δ AH5100C9W \diamond		AH5100P9W AH5100B9W -	\because
	$\begin{gathered} 3 \text { 3gY } \\ 277 / 480 \mathrm{~V} / \mathrm{AC} \end{gathered}$	CD560MI7W >0 CD560MIF7W >E AH560R7W Δ AH560C7W \diamond		$\begin{aligned} & \text { AH560P7W } \\ & \text { AH560B7W } \end{aligned}$		CD5100MI7W $>\mathbf{Q}$ AH5100R7W Δ AH5100C7W \diamond AH5100R7W-15 $\triangle A$		AH5100P7W AH5100B7W -	\because
	$\begin{gathered} 3 \mathrm{gY} \\ 347 / 600 \mathrm{~V} / \mathrm{AC} \end{gathered}$	CD560MI5W >O CD560MIF5W >E AH560R5W \triangle AH560C5W \diamond		AH560P5W AH560B5W		AH5100R5W \triangle AH5100C5W		AH5100P5W AH5100B5W	\because

Locking device legend: How to use the chart

Core catalog number color indicates a device's grade:

BLACK = Extra heavy-duty industrial specification grade

A suffix combining a RED shape and alpha letter indicate a device's body, type and available options.

Device body:

\square Duplex receptacle	\bullet Flanged inlet	Open shape has holes (receptacles, connectors, outlets) (Plug
\diamond Connector		Mechanical interlock
Closed shape has blades		
(plugs, inlets)		

Device type:

A	Angled	E	Fusible
B	Circuit breaker option	F	Fuse option

Compliances, specifications and availability are subject to change without notice.
Eaton.com
Eaton.com/wiringdevices

International Standard Amp Rating

	Rating	16 A Watertight pin α sleeve				32 A Matertight pin Q sleeve			
		Receptacle \& connector		Plug \& inlet		Receptacle \& connector		Plug \& inlet	
을을	110-130V	AH316R4W \triangle AH316C4W		$\begin{aligned} & \text { AH316P4W } \\ & \text { AH316B4W } \end{aligned}$		AH332R4W Δ AH332C4W		$\begin{aligned} & \text { AH332P4W } \\ & \text { AH332B4W } \end{aligned}$	\cdots
	220-240V	AH316R6W \triangle AH316C6W		AH316P6W AH316B6W		AH332R6W \triangle AH332C6W		AH332P6W AH332B6W	
	$380 \mathrm{~V}, 50 \mathrm{~Hz}$ $440 \mathrm{~V}, 60 \mathrm{~Hz}$					$\begin{aligned} & \text { AH332R3W } \Delta \\ & \text { AH332C3W } \diamond \end{aligned}$		$\begin{aligned} & \text { AH332P3W } \\ & \text { AH332B3W } \end{aligned}$	00
	380-415V	AH416R6W \triangle AH416C6W		AH416P6W AH416B6W		AH432R6W \triangle AH432C6W		AH432P6W AH432B6W	\because
	$\begin{aligned} & \text { 220/380 } \\ & 240 / 415 \end{aligned}$	AH516R6W Δ AH516C6W		AH516P6W AH516B6W		AH532R6W Δ AH532C6W		$\begin{aligned} & \text { AH532P6W } \\ & \text { AH532B6W } \end{aligned}$	\square

Locking device legend: How to use the chart
Core catalog number color
BLACK = Extra heavy-duty industrial specification grade
indicates a device's grade:

Device body:

| Δ Single receptacle \quad Flanged inlet | Open shape has holes
 (receptacles, connectors, outlets)
 Closed shape has blades |
| :--- | :--- | :--- |
| \diamond Plug | |
| (plugs, inlets) | |

Compliances, specifications and availability are subject to change without notice.

Pin \& sleeve configurations
International Standard Amp Rating

Locking device legend: How to use the chart
Core catalog number color
BLACK = Extra heavy-duty industrial specification grade
indicates a device's grade:
Device body:
Δ Single receptacle

- Plug
\diamond Connector

Open shape has holes
(receptacles, connectors, outlets)
Closed shape has blades
(plugs, inlets)

Compliances, specifications and availability are subject to change without notice.

NEMA configurations (plugs \& receptacles only)

Straight blade configurations		
NEMA	AC HP rating	Rating
1-15	0.5	15A-125V
2-15	1.5*	15A-250V
2-20	2^{*}	20A-250V
2-30	2*	30A-250V
5-15	0.5	15A-125V
5-20	1	20A-125V
5-30	2	$30 \mathrm{~A}-125 \mathrm{~V}$
5-50	2	50A-125V
6-15	1.5*	15A-250V
6-20	2*	20A-250V
6-30	2*	30A-250V
6-50	3*	50A-250V
7-15	2	15A-277V/AC only
7-20	2	20A-277V/AC only
7-30	3	30A-277V/AC only
7-50	5	50A-277V/AC only
10-20	2L-L*/1 L-N	20A-125/250V
10-30	$2 \mathrm{~L}-\mathrm{L}^{*} / 2 \mathrm{~L}-\mathrm{N}$	30A-125/250V
10-50	$3 \mathrm{~L}-\mathrm{L}^{*} / 2 \mathrm{~L}-\mathrm{N}$	50A-125/250V
11-15	2	15A-30 250V
11-20	3	20A-30 250V
11-30	3	30A-30 250V
11-50	7.5	50A-30 250V
14-15	1.5L-L*/0.5 L-N	15A-125/250V
14-20	$2 \mathrm{~L}-\mathrm{L}^{*} / 1 \mathrm{~L}-\mathrm{N}$	20A-125/250V
14-30	$2 \mathrm{~L}-\mathrm{L}^{*} / 2 \mathrm{~L}-\mathrm{N}$	30A-125/250V
14-50	$3 \mathrm{~L}-\mathrm{L}^{*} / 2 \mathrm{~L}-\mathrm{N}$	50A-125/250V
14-60	3 L-L*/2 L-N	60A-125/250V
15-15	2	15A-30 250V
15-20	3	20A-30 250V
15-30	3	30A-30 250V
15-50	7.5	50A-30 250V
15-60	10	60A-30 250V
18-15	2	15A-3ØY 120/208V
18-20	2	20A-3ØY 120/208V
18-30	3	30A-3ØY 120/208V
18-50	7.5	50A-3ØY 120/208V
18-60	7.5	60A-3ØY 120/208V

L-L denotes phase-to-phase HP rating
L-N denotes phase-to-neutral HP rating
*Suitable for 208 V motor applications at HP rating

Locking configurations		
NEMA	AC HP rating	Rating
L1-15	0.5	15A-125V
L2-20	2*	20A-250V
L5-15	0.5	15A-125V
L5-20	1	20A-125V
L5-30	2	30A-125V
L6-15	1.5*	15A-250V
L6-20	2*	20A-250V
L6-30	2*	30A-250V
L7-15	2	15A-277V/AC only
L7-20	2	20A-277V/AC only
L7-30	3	30A-277V/AC only
L8-20	3	20A-480V/AC only
L8-30	5	30A-480V/AC only
L9-20	NA	20A-600V/AC only
L9-30	NA	30A-600V/AC only
L10-20	$2 \mathrm{L-L} / 1 \mathrm{~L}-\mathrm{N}$	20A-125/250V
L10-30	$2 \mathrm{L-L} / 2 \mathrm{~L}-\mathrm{N}$	30A-125/250V
L11-15	2	15A-30 250V
L11-20	3	20A-30 250V
L11-30	3	30A-30 250V
L12-20	5	20A-30 480V
L12-30	10	30A-30 480V
L13-30	NA	30A-30 600V
L14-20	2L-L*/1 L-N	20A-125/250V
L14-30	$2 \mathrm{~L}-\mathrm{L}^{*} / 2 \mathrm{~L}-\mathrm{N}$	30A-125/250V
L15-20	3	20A-30 250V
L15-30	3	30A-30 250V
L16-20	5	20A-30 480V
L16-30	10	30A-30 480V
L17-30	NA	30A-30 600V
L18-20	2	20A-30Y 120/208V
L18-30	3	30A-30Y 120/208V
L19-20	5	20A-30Y 277/480V
L19-30	10	30A-30Y 277/480
L20-20	NA	20A-30Y 347/600V
L20-30	NA	30A-30Y 347/600V
L21-20	2	20A-30Y 120/208V
L21-30	3	30A-30Y 120/208V
L22-20	5	20A-30Y 277/480V
L22-30	10	30A-30Y 277/480V
L23-20	NA	20A-30Y 347/600V
L23-30	NA	30A-30Y 347/600V
L24-20	NA	20A-347V/AC
L25-30	NA	30A-240V/AC
L26-30	NA	30A-30Y 240/415V/AC

L-L denotes phase-to-phase HP rating
L-N denotes phase-to-neutral HP rating
*Suitable for 208V motor applications at HP rating

Compliances, specifications and availability are subject to change without notice.

Common Industry Information

Common industry information

Organization abbreviations glossary

Common abbreviations for organizations often referred to in the electrical industry, and also noted throughout the Arrow Hart catalog

ANSI
American National Standards Institute, Inc.
ANSI is a private, non-profit organization that administers and coordinates the U.S. voluntary standardization and conformity assessment system. The Institute's mission is to enhance both the global competitiveness of U.S. business and the U.S. quality of life by promoting and facilitating voluntary consensus standards and conformity assessment systems and safeguarding their integrity.

www.ansi.org

CEC Title 24

California Energy Commission's Energy Efficiency Standards for Residential and Nonresidential Buildings
Part of the California State Building Code, Title 24 requires a minimum level of energy efficiency for all new heated or cooled structures, including additions and alterations to existing homes and most commercial buildings. Energy efficient lighting and controls must be incorporated per the current standards.
Energy-efficient lighting fixtures are required as well as the use of dimmers and vacancy/occupancy sensors. The standard covers all rooms in a home except closets under 70 square feet.

www.energy.ca.gov/title24

CSA

Canadian Standards Association

The Canadian Standards Association is a not-for-profit, membership-based association that conducts product safety testing, and issues certifications.
www.csa.org

GSA
 General Services Administration Federal Supply Service

GSA's Federal Supply Service provides federal customers with a specific list of manufacturer's products that have been approved to meet stated requirements. The most frequently cited Federal Specifications regarding electrical wiring devices are those for Electrical Power Connector, Plug, Receptacle and Cable Outlet (Fed. Spec. W-C 596) and for Toggle and Lock, Flush Mounted Switches (Fed. Spec. W-S 896).
www.gsa.gov

NEC

National Electrical Code ${ }^{\circledR}$

Published by the NFPA (see listing) as NFPA 70, the National Electrical Code. This publication, renewed every 3 years under the auspices of ANSI, provides for the adequate protection of life and property from dangers associated with the use of electricity. It is now adopted and enforced in all 50 states in the United States and is also the basis for electrical codes in several other countries. www.nfpa.org

NEMA
National Electrical Manufacturers Association
Comprised of electrical manufacturers, NEMA provides a forum for the standardization and testing of electrical equipment, enabling consumers to select from a range of safe, effective, and compatible electrical products. NEMA-standards of testing is frequently required by both government and third-party endorsees such as UL and CSA prior to their approval.
www.NEMA.org

NFPA

National Fire Protection Association
The mission of the international non-profit NFPA is to reduce the worldwide burden of fire and other hazards on the quality of life by providing and advocating scientifically based consensus codes and standards, research, training and education. The NFPA authors the NEC ${ }^{\circledR}$ and NPPA 70E electrical safety in the workplace.

www.nfpa.org

NOM

Normas Oficiales de México (Official Mexican Standards)
The Official Mexican Standards (referred to as Normas or NOMs) augment the Mexican Hazardous Materials Land Transportation Regulation and provide information relative to importing and exporting hazardous materials from and to Mexico.

OSHA
 Occupational Health and Safety Administration, U.S. Department of Labor

OSHA's mission is to assure safe and healthful working conditions for working men and women (having been authorized to enforce standards first created under the Occupational Health and Safety Act of 1970 and since evolved), by assisting and encouraging the States in their efforts to assure safe and healthful working conditions.
www.osha.gov

UL
 Underwriters Laboratories

Underwriters Laboratories Inc. (UL) is an independent, nonprofit product safety testing and certification organization.
www.ul.com

NSF

National Sanitation Foundation
NSF International helps protect people by certifying products and writing standards for consumer goods. As an independent, not-for-profit organization, NSF works toward allowing everyone to live safer.
www.nsf.org

Common industry information

Organization acronyms

ANSI	American National Standards Institute
ASME	American Society of Mechanical Engineers
BRC	British Retail Consortium
CANENA	Consejo de Armonización de Normas Electrotécnicas de Norte América (Council for Harmonization of Electrotechnical Standardization of North America)
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
ISA	Instrument Society of America
ISO	International Standards Organization
NFPA	National Fire Protection Agency
NSF	National Sanitation Foundation
SAE	Society of Automotive Engineers
SME	Society of Manufacturing Engineers
TITLE 24	California Building Energy Efficiency Standards
Certification agencies	
ANCE	National Association of Normalization and Certification of the Electrical Sector (Mexico)
BSI	British Standards Institute
CCC	China Compulsory Certification
CE	European Compliance (This is not a certification agency, but CE is the European Compliance Mark)
CSA	Canadian Standards Association
cUL	Certified to CSA Standards by Underwriters Laboratories
cULus	Meets Canadian \& US UL requirements
DESC	Defense Electronic Supply Center
ETL	Electrical Testing Laboratories
FCC	Federal Communications Commission
FM	Factory Mutual
IAPA	Independent Accident and Protection Association (Canada)
LEED	Leadership in Energy and Environmental Design
NRTL	National Recognized Testing Laboratories
OSHA	Occupational Safety and Health Administration
TUV	TUV Rheinland of N.A., Inc.
VDE	Verband Deutscher Elektrotechniker (Germany)

Common UL \& CSA standards for wiring devices

UL standards

UL20	General-use switches
UL50	Enclosures for electrical equipment
UL94	Flammability testing for materials, plastic
UL244A	Appliance controls
UL486E	Equipment and wiring terminals
UL496	Lampholders
UL498	Plugs, connectors, receptacles, inlets, outlets
UL498A	Taps and adapters
UL498B	Receptacles with integral switching means
UL508	Industrial equipment (including motor control switches)
UL514A	Metallic outlet boxes
UL514C	Nonmetallic outlet boxes and covers
UL514D	Wallplates for flush mounted wiring devices
UL746C	Polymeric materials for use in electrical equipment
UL817	Cord sets
UL943	GFCls
UL1310	Class 2 Power Units
UL1363	Relocatable power taps
UL1436	Outlet circuit testers
UL1449	Surge suppression devices
UL1472	Dimmers
UL1567	Switches and receptacles used with AL wire

Compliances, specifications and availability are subject to change without notice.

Certification agencies (continued)

UL	Underwriters Laboratories
Wi-Fi Alliance - Wi-Fi Certification	
Z-Wave Alliance - Z-Wave Plus Certification	
Codes $\&$	standards
CEC	Canadian Electrical Code
CEE	European Electrotechnical Committee
NEC	National Electrical Code
NMX	Normas Mexicanas
NOM	Normas Oficiales de México (Official Mexican Standard)

Industry associations

ABYC	American Boat and Yacht Council
ASHE	American Society of Healthcare Engineering
ASHRAE	American Society of Heating Refrigerating and Air-Conditioning Engineers
BICSI	Building Industry Consulting Services International
BOMA	Building Owners Management Association
CANAME	Cámara Nacional de Manufacturas Eléctricas (México)
CEMRA	Canadian Electrical Manufacturers Representatives Association
ECOC	Electrical Contractors of Canada
EFI	Electro-Federation Incorporated
EIA	Electronics Industry Association
EPRI	Electric Power Research Institute
IAEI	International Association of Electrical Inspectors
IBI	Intelligent Building Institute
IFCA	Independent Electrical Contractors Association
International Facilities Management Association	National Association of Electrical Distributors
NAW	National Association of Wholesalers
NECA	National Electrical Contractors Association
NEMA	National Electrical Manufacturers Association
NEMRA	National Electrical Manufacturers Representative Association
NMDA	National Marine Distributor Association
NMRA	National Marine Representative Association
SEMI	Semi-Conductor Equipment and Material International
TIA	Telecommunications Industry Association
USGBC	US Green Building Council

UL standards (continued)

UL1698	LED Luminaires
UL1699	Arc fault circuit interrrupters
UL1786	Plug-In nightlights
UL1863	Communications circuit accessories
UL1917	Solid state fan speed control
Standards	
IEC 60309-1/2	Plugs, socket-outlets and couplers for industrial purposes
SSL 7A	NEMA phase cut dimming for solid state lighting compatibility
W-C-596	Federal Specification electrical plugs, receptacles and cable outlets
WD-1	NEMA General color requirements for wiring devices
WD-6	NEMA Wiring devices dimensional specifications
W-S-896	Federal Specification switches

CSA standards

C22.2 No. 0.17	Polymeric materials
C22.2 No. 12	Night lights
C22.2 No. 42	General-use receptacles, attachment plugs
C22.2 No. 111	General-use switches
C22.2 No. 144	GFCl
C22.2 No. 182.1	Industrial-type, special-use attachment plugs, receptacles and Connectors. Pin and sleeve devices

Selected articles, National Electric Code (NEC ${ }^{\ominus}$) requirements for

 wiring devices from NFPA 70 ${ }^{\text {™ }}$, NEC $^{\oplus} 2020$ EditionArticle 210 - Branch circuits

210.8	Ground-fault circuit-interrupter protection for personnel
$\mathbf{2 1 0 . 1 2}$	Arc-fault circuit-interrupter protection
$\mathbf{2 1 0 . 2 1}$	Branch circuit ratings, outlet devices
$\mathbf{2 1 0 . 2 4}$	Branch circuit requirements - summary
210.50	Required outlets, general
\mathbf{R}Required outlets, guest rooms, guest suites, dormitories and similar occupancies	
$\mathbf{2 1 0 . 6 2}$	Required outlets, show windows

Article 404 - Switches

404.2	Installation, switch connections
404.3	Installation, enclosure
404.4	Installation, damp or wet locations
404.9	Installation, provisions for general-use snap switches
404.14	Rating and use of snap switches
404.20	Construction specifications, marking

Article 406 - Receptacles, cord connectors
\& attachment plugs (caps)

406.3	Receptacle rating and type
406.4	General installation requirements
406.5	Receptacle mounting
406.6	Receptacle faceplates (cover plates)
406.7	Attachment plugs, cord connectors and flanged surface devices
406.8	Noninterchangeability
406.9	Receptacles in damp or wet locations
406.10	Grounding-type receptacles, adapters, cord connectors and attachment plugs

Article 430 - Motors, motor circuits \& controllers

430.8	Marking on controllers
430.81	Motor controllers, general
430.82	Motor controllers, controller design
430.83	Motor controllers, ratings
430.90	Combination fuseholder and switch as controller
430.102	Disconnecting means, location
430.109	Disconnecting means, type

430.109 Disconnecting means, type

517.2	Definitions
517.10	Wiring and protection, applicability
517.13	Grounding of receptacles and fixed electrical equipment in patient care areas
517.14	Panelboard bonding
517.16	Use of isolated ground receptacles
517.17	Ground-fault protection
517.18	Wiring and protection, general care areas
517.19	Wiring and protection, critical care areas
517.20	Wiring and protection, wet procedure locations
517.21	Ground-Fault-Circuit-Interrupter protection for personnel
517.29	Essential electrical systems for hospitals
517.32	Branches requiring automatic connection
517.41	Required power sources
517.42	Essential electrical systems for nursing homes and limited care facilities
517.45	Essential electrical systems for other health care facilities
517.61	Inhalation anesthetizing locations, wiring and equipment
517.62	Inhalation anesthetizing locations, grounding
517.63	Grounded power systems in anesthetizing locations
517.64	Inhalation anesthetizing locations, low-voltage equipment and instruments
517.71	X-ray installations connection to supply circuit
517.72	X-ray installations disconnecting means
517.160	Isolated power systems

Article 555 - Marinas, boatyards, floating buildings,
\& commercial and noncommercial docking facilities

555.1	Scope
555.33	Receptacles
555.34	Wiring methods and installations
555.35	Ground-Fault Protection of Equipment (GFPE) and Ground-Fault Circuit-Interrupter (GFCI) Protection
555.36	Disconnecting means for shore power connection(s)
555.56	Equipment grounding

Article 590 - Temporary installations

590.4	General
590.6	Ground-fault protection for personnel

Article 604 - Manufactured wiring systems

604.2	Definition
604.100	Construction
Article $\mathbf{6 3 0}$ - Electric welders	
630.13	Arc welders, disconnecting means
630.33	Resistance welders, disconnecting means

Article 647 - Sensitive electronic equipment

647.7	Receptacles (including isolated ground receptacles)
Article $\mathbf{6 6 0} \boldsymbol{-} \mathbf{X - r a y ~ e q u i p m e n t ~}$	
660.4	Connection to supply circuit
660.5	Disconnecting means

Article 700 - Emergency systems
700.31 Overcurrent protection, ground-fault protection of equipment

[^0]Key

E	Thermoplastic elastomer
$\mathbf{0}$	Oil resistant outer jacket
$\mathbf{0 0}$	Oil resistant outer jacket \& oil resistant insulation
\mathbf{P}	Parallel

S Extra hard usage (600V)
 SJ Junior hard usage (300V)
 T Thermoplastic/vinyl

V Vacuum (typically used for portable cleaning equipment)

W Weather \& water resistant for damp \& wet locations

Examples

SEOOW Extra hard usage thermoplastic elastomer with oil resistant outer jacket and insulation; approved for outdoor use and water resistance; 600 V up to $105^{\circ} \mathrm{C}$.

SJT Hard usage thermoplastic rubber-insulated conductors and overall thermoplastic jacket. 300 V up to $105^{\circ} \mathrm{C}$.
SJTW Hard usage thermoplastic or rubber-insulated conductors and overall thermoplastic jacket. 300 V up to $105^{\circ} \mathrm{C}$. Weather resistant for outdoor use.

SPT-2 Same as SPT-1, but heavier construction (18-16 gauge).
SPT-3 Same as SPT-2, but heavier construction (18-10 gauge).
SRDT Portable range or dryer cable, 3-conductor parallel type or 4 insulated conductors, jacketed. All thermoplastic construction. 300 V , maximum temperature of $60^{\circ} \mathrm{C}$.

HPN Two-conductor, neoprene-insulated heater cord. Parallel construction. For use in damp locations. $300 \mathrm{~V}, 90^{\circ} \mathrm{C}$.

SPT-1 All thermoplastic construction, parallel jacketed. 300 V up to $105^{\circ} \mathrm{C}$, 2 or 3 -conductor (18 gauge).

Diameter ranges of jacketed cord in accordance with standard UL62

Acceptable range for overall diameter of jacketed cord

Type of cord	Avg. size	2-Conductor	3-Conductor	4-Conductor	5-Conductor
SV, SVO, SVT SVTO	18	$\begin{aligned} & \hline 0.22 "-0.26 " 1 \\ & (5.6 \mathrm{~mm}-6.6 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.23 "-0.27 " \\ & (5.8 \mathrm{~mm}-6.9 \mathrm{~mm}) \end{aligned}$	-	-
SJ, SJE, SJO, SJOO, SJEO, SJEOO, SJT, SJTO, SJTOO, SJEW, SJEOW, SJEOOW, SJTW, SJTOW, SJTOOW	18	$\begin{aligned} & 0.28 "-0.32 " \\ & (7.1 \mathrm{~mm}-8.1 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.30 "-0.34 " \\ & \text { (7.6mm-8.6mm) } \end{aligned}$	$\begin{aligned} & 0.33 "-0.37 " \\ & \text { (8.4mm-9.4mm) } \end{aligned}$	-
	16	$\begin{aligned} & 0.31 "-0.34 " \\ & (7.9 \mathrm{~mm}-8.6 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.33 "-0.36 " \\ & \text { (8.4mm-9.1mm) } \end{aligned}$	$\begin{aligned} & 0.35 "-0.40 " \\ & (8.9 \mathrm{~mm}-10.2 \mathrm{~mm}) \end{aligned}$	-
	14	$\begin{aligned} & 0.34 "-0.38 " \\ & (8.6 \mathrm{~mm}-9.7 \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.36 "-0.40 " \\ & (9.1 \mathrm{~mm}-10.2 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.39 "-0.44 " \\ & \text { (9.9mm-11.2mm) } \end{aligned}$	-
	12	$0.41^{\prime \prime}-0.46 "$ (10.4mm-11.7mm)	$\begin{aligned} & 0.43 "-0.48 " \\ & (10.9 \mathrm{~mm}-12.2 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.47 "-0.52 " \\ & (11.9 \mathrm{~mm}-13.2 \mathrm{~mm}) \end{aligned}$	-
	10	0.54"-0.61" ($13.7 \mathrm{~mm}-15.5 \mathrm{~mm}$)	0.57"-0.64" ($14.5 \mathrm{~mm}-16.3 \mathrm{~mm}$)	$\begin{aligned} & \hline 0.63 "-0.70 " \\ & \text { (16.0mm-17.8mm) } \end{aligned}$	-
S, SE, SOO, SEO, SEOO, ST, STOO, STO SEW, SOOW, SOW, SEOW, SEOWW, STW, STOOW, STOW	18	$\begin{aligned} & 0.34 "-0.39 " \\ & \text { (8.6mm-9.9mm) } \end{aligned}$	$\begin{aligned} & 0.36 "-0.40 " \\ & (9.1 \mathrm{~mm}-10.2 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.39 "-0.43 " \\ & (9.9 \mathrm{~mm}-10.9 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.46 "-0.51 " \\ & \text { (11.7mm-13.0mm) } \end{aligned}$
	16	$\begin{aligned} & 0.37^{\prime \prime}-0.41^{\prime \prime} \\ & \text { (9.4mm-10.4mm) } \end{aligned}$	$\begin{aligned} & 0.39 "-0.43 " \\ & \text { (9.9mm-10.9mm) } \end{aligned}$	$\begin{aligned} & 0.41 \text { "-0.46" } \\ & (10.4 \mathrm{~mm}-11.7 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.49 \text { " }-0.55 \text { " } \\ & \text { (12.4mm-14.0mm) } \end{aligned}$
	14	$\begin{aligned} & 0.50 "-0.55 " \\ & (12.7 \mathrm{~mm}-14.0 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.52 "-0.58 " \\ & (13.2 \mathrm{~mm}-14.7 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.56 "-0.62 " \\ & (14.2 \mathrm{~mm}-15.7 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.63 "-0.71 " \\ & \text { (16.0mm-18.0mm) } \end{aligned}$
	12	$\begin{aligned} & 0.57 "-0.63 " \\ & \text { (14.5mm-16.0mm) } \end{aligned}$	$\begin{aligned} & 0.59 "-0.66 " 1 \\ & \text { (15.0mm-16.8mm) } \end{aligned}$	$\begin{aligned} & 0.64 "-0.71 " \\ & \text { (16.3mm-18.0mm) } \end{aligned}$	0.70"-0.77" (17.8mm-19.6mm)
	10	$\begin{aligned} & 0.62 "-0.69 " \\ & (15.7 \mathrm{~mm}-17.5 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 0.65 "-0.72^{\prime \prime} \\ & (16.5 \mathrm{~mm}-18.3 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 0.70 "-0.78 " 1 \\ & (17.8 \mathrm{~mm}-19.8 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 0.76 "-0.84 " 1 \\ & (19.3 \mathrm{~mm}-21.3 \mathrm{~mm}) \\ & \hline \end{aligned}$
	8	$\begin{aligned} & 0.78 "-0.88 " \\ & (19.8 \mathrm{~mm}-22.4 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 0.83 "-0.93^{\prime \prime} \\ & (21.1 \mathrm{~mm}-23.6 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 0.93 "-1.05 " \\ & (23.6 \mathrm{~mm}-26.7 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 1.00 "-1.15 \mathrm{"} \\ & (25.4 \mathrm{~mm}-29.2 \mathrm{~mm}) \end{aligned}$
	6	$\begin{aligned} & 0.92 "-1.05 " \\ & \text { (23.4mm-26.7mm) } \end{aligned}$	$\begin{aligned} & 0.97 "-1.10 " \\ & \text { (24.6mm-27.9mm) } \end{aligned}$	$\begin{aligned} & 1.05 "-1.20 " \\ & (26.7 \mathrm{~mm}-30.5 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.18 "-1.33 " \\ & \text { (30.0mm-33.8mm) } \end{aligned}$
	4	$\begin{aligned} & 1.066^{\prime \prime}-1.21^{\prime \prime} \\ & (26.9 \mathrm{~mm}-30.7 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.13^{\prime \prime}-1.28 " \\ & (28.7 \mathrm{~mm}-32.5 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.25 "-1.45^{\prime \prime} \\ & (31.8 \mathrm{~mm}-3.8 \mathrm{~mm}) \end{aligned}$	-
	2	$\begin{aligned} & 1.21 "-1.40 " \\ & \text { (30.7mm-35.6mm) } \end{aligned}$	$\begin{aligned} & 1.30 "-1.50 " \\ & \text { (33.0mm-38.1mm) } \end{aligned}$	$\begin{aligned} & 1.45 "-1.65 " \\ & \text { (36.8mm-41.9mm) } \end{aligned}$	-

Compliances, specifications and availability are subject to change without notice.

2-pole, 3-wire grounding: 125V

2-pole, 3 -wire grounding: 250V/AC

2-pole, 3-wire grounding: 240V	2-pole, 3-wire grounding: 277V AC	
2-pole, 3-wire grounding: 480V/AC	2-pole, 3-wire grounding: 600V/AC, 250V/DC	2-pole, 3-wire grounding: 600V/AC

Compliances, specifications and availability are subject to change without notice.

4-pole, 4 -wire non-grounding: $3 \varnothing 120 / 208 \mathrm{~V}$

4-pole, 4-wire non-grounding: 30 277/480V	4-pole, 4-wire non-grounding: $3 \varnothing 347 / 600 \mathrm{~V}$
4-pole, 5 -wire grounding: $3 Ø 120 / 208 \mathrm{~V}$	4-pole, 5-wire grounding: $3 \varnothing$ 240/415V
4-pole, 5-wire grounding: $3 \varnothing$ 277/480V	4-pole, 5-wire grounding: 3Ø 347/600V

Wiring diagrams (by NEMA configurations)

Receptacles wiring diagrams

Combination devices wiring diagrams

Single pole switches

Compliances, specifications and availability are subject to change without notice.

Switches wiring diagrams

[^1]Wi-Fi smart universal dimmer
WFD30
WFD30

Dimmer with neutralINC, MLV, ELV, FLR, LED, CFL RF9640-N Single pole	Dimmer with accessory dimmer INC, MLV, ELV, FLR, LED, CFL RF9642-Z, RF9640-N

Aspire, Electronic

Dimmer with neutral 9534, 9536, 9537, AIM10	INC, MLV, ELV Single pole	Dimmer with neutral INC, MLV, ELV 9534, 9536, 9537, 9542, AIM10, ARD Multi-location
	NOTE: FOR SINGLE LOCATION installations the blue AND RED WIRE MUST BE CONNECTED TOGETHER IN ORDER FOR THE DIMMER TO OPERATE PROPERLY. CONNECTING ONLY ONE OF THESE WIRES WILL CAUSE THE DIMMER TO NOT OPERATE AT ALL.	

Electronic

[^2]Wiring \& coverage diagrams
Dimmers

Decorator \& Slide DUL06P, SUL06P	dimmer \quad INC, MLV, ELV, FLR, LED, CFL Single pole	Decorator \& Slide dimmer INC, MLV, ELV, FLR, DUL06P, SUL06P
Aspire Slide dimmers INC, MLV, ELV 9530, 9531, 9532, 9533		Aspire Slide dimmers $9530,9531,9532,9533$ INC, MLV, ELV $3-W a y$
CONNECT WIRES TO EITHER POWER TERMINAL		CONNECT WIRES TO EITHER REMAINING POWER TERMINAL.
Decorator, Slide dimmers 9568, 95687, DF8AP, DF8AP7, SF8AP7 Single		Decorator, Slide dimmers FLR 9568, 95687, DF8AP, DF8AP7, SF8AP7 3-Way
ballast LO		
Slide dimmer 9573		Slide dimmer 9573 LED, CFL, INC 3-Way

Compliances, specifications and availability are subject to change without notice.

Wiring \& coverage diagrams

Dimmers \& fan speed controls

Aspire slide dimmer/fan control 9544,9543 3-Speed \& fully variable Single pole	Aspire slide dimmer/fan control3-Speed \& fully variable 3-Way 544,9543
CONNECT WIRES TO EITHER POWER TERMINAL	
Decorator dimmer/fan control INC, MLV DI10P, DFS15P1 Single pole	Decorator dimmer/fan control INC, MLV DI10P, DFS15P1 3-Way
Slide dimmer/fan control INC, MLV SI061, SI10P, SFS $15 P$, SFS5P, SFS5 Single pole	Slide dimmer/fan control INC, MLV SI061, SI10P, SFS15P, SFS5P, SFS5
Slide dimmer/fan control 3-Speed, INC SDC15 Single pole	Toggle/rotary fan control Fully variable TFS5, RFS5, RFS15 Single pole

[^3]Dimmers \& fan speed controls
Toggle dimmer
TULO6P

Compliances, specifications and availability are subject to change without notice.

Standard series OS306U, VS306U All load types	Sensor switch OS310U, VS310U, OS310R, VS310R, OSUL06D, VSUL06D All load types

Timers

Compliances, specifications and availability are subject to change without notice.

Dimensional data (switches)

AH4361

Dimensional data (enclosures)
AH6810E, AH7810ED

[^4]
Matching the dimmer to the load

A large selection of lighting sources are available in today's lighting environment. These sources have specific individual characteristics which require mating a particular dimmer for each load type (source). For proper use it is important to pick a dimmer that is designed and UL tested for that specific lighting load type.

Incandescent/halogen

Line-voltage tungsten filament lamps, including

(Fluorescent (FLR)

Electronic fluorescent dimming ballast
Special dimmers are designed and UL listed to send power and control signals to each type of electronic fluorescent dimming ballast.
Special requirements: rated for cold filament inrush. dinning ballast.
Magnetic Low-Voltage (MLV)
Magnetic transformer-supplied low-voltage lighting
(6 volt, 12 volt, or 24 volt)
Light Emitting Diode (LED)
Electronic LED driver special dimmers are designed to send power and control signals to each type of electronic LED drive.
Special requirements: LED light source must be properly matched to LED driver, and LED driver must meet control spec for control type.
Special requirements: symmetric cycles (VDC ≤ 2), smooth turn off
Include transformer losses when calculating the load.
Electronic Low-Voltage (ELV)
Electronic (solid-state) transformer-supplied
low-voltage lighting
Electrical characteristic: capacitive
Special characteristic: very smooth turn on.
Neutral wire connection required.

Magnetic low-voltage dimmer ratings

The stated VA (volt-ampere) rating is the rated capacity of the dimmer which includes the magnetic transformer heat losses and the lamp load. A slide dimmer that is UL listed for 1000VA can be loaded with a full 1000 VA of lamp load. A transformer dissipates up to 20% of the connected load as heat.
Better transformers dissipate less than 10% as heat. Added together, the lamp load and the transformer loss determine the dimmer capacity required. See example.

Electronic low-voltage dimmer ratings

Electronic Low-Voltage transformers do dissipate some heat. These inefficiencies are small enough to be accounted for in the dimmer rating. A dimmer this is UL listed for 600 W can be loaded with a full 600 W of lamp load. If ganged with other dimmers, standard derating rules apply.

Heat dissipation

During normal operation, dimmers will get warm to the touch. Wallbox dimmer efficiency is typically around 99%; the remaining 1% is dissipated as heat. Therefore, a 600 W load on a 600 W dimmer would produce around 6 watts of heat. Operating on its rated load, dimmers will stay below the UL limits of $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$. Use screwless wallplates to avoid contact with metal screws that may feel warm to the touch.

Single pole

Single pole dimmers provide control from one location.

Multi-location
H8BE
Multi-location dimmers can be used with dimmers for full dimming control of the lights from two or more locations.

3-Way/4-Way

88宿

3-Way dimmers adjust the light level from one location. When usedwith 3-Way and 4-way switches, the lights can be turned on to the dimmer level or off from many locations.

Consult with Eaton's Wiring Devices for driver compatibility: www.eaton.com/wiringdevices

Fluorescent lampholder panel cutout dimensional data

Panel cutouts 2500, 2501, 2503, 2504 2505, 2506	Panel cutouts 2509, 2510	924

Snap-in receptacle panel cutouts

Panel cutout 49		Panel cutout 67	
	Panel Cutout 49		

Attachon lampholder cutouts

Panel cutout 732-3	Panel cutout 734	Panel cutout 4734-2
Panel cutout 732-3	Panel cutout 732-3	

Switch applications

Test requirements

The maximum permitted load for which a switch is suitable depends on the switch rating and the nature of the load. Proper selection of switches is determined by test standards and requirements of the National Electrical Code ${ }^{\oplus}$, Articles 380, 430, and 600.
General Use AC switches are suitable for use at full rated current and voltage on loads of fluorescent and incandescent lighting and for other inductive or resistance loads. Our switches are rated for motor loads at 80\% of their rated current.
Special Use AC switches may be used at full rating on resistance or inductive loads, including fluorescent. For incandescent (tungsten) lighting loads, they must carry an "L" rating. For motor loads they require an "HP" (horsepower) rating.
To ensure safety and reliability, Arrow Hart switches are tested, rated and marked according to various standards. The following charts indicate both the required performance tests specified by industry standards for switches with standard ratings, and the loads they may control.

Test requirements - switches general use - AC only

Rating	Standard	Overload				Endurance		Resistance cycles $1.0 \mathrm{pf} .{ }^{\text {t }}$	Inductive cycles . 75 to .8 pf.	Tungsten cycles 1.0 pf.
		Amps	Volts	Power factor	Cycles	Amps	$\begin{aligned} & \text { Volts } \\ & \text { (Max) } \end{aligned}$			
$\begin{aligned} & 15 \mathrm{~A}_{\prime} \\ & 120 \mathrm{~V} / \mathrm{AC} \end{aligned}$	UL20	72	120 AC	. 4 to 5	100	15	120 AC	10,000	10,000	10,000
	WS 896	72	120 AC	. 4 to 5	100	15	120 AC	-	50,000	50,000
$\begin{aligned} & 15 \mathrm{~A} \\ & 120 / 277 \\ & 277 \mathrm{~V} / \mathrm{AC} \end{aligned}$	UL20	72	277 AC	. 4 to 5	100	15	277 AC	10,000	10,000	10,000
	WS 896	72	277 AC	. 4 to 5	100	15	277 AC	-	50,000	50,000
$\begin{aligned} & \text { 20A } \\ & 120 / 277 \\ & \text { 277V/AC } \end{aligned}$	UL20	96	277 AC	. 4 to . 5	100	20	277 AC	10,000	10,000	10,000
	WS 896	96	277 AC	. 4 to 5	100	20	277 AC	-	50,000	50,000
$\begin{aligned} & 20 \mathrm{~A}, \\ & 120 / 277 \\ & 277 \mathrm{~V} / \mathrm{AC} \end{aligned}$	UL20	144	277 AC	. 4 to 5	100	30	277 AC	10,000	10,000	10,000
	WS 896	144	277 AC	. 4 to 5	100	30	277 AC	-	50,000	50,000

Test requirements - switches special use - AC only

WSB 896 Standard

All switches are subjected to resistive endurance, inductive endurance, tungsten endurance and then verified that they meet
less than a $86^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ temperature rise at rated current and
followed by a dielectric test at 1500 V/AC for 1 minute.
\dagger Power Factor voltage,

Switch applications

Maximum loads

	Incandescent		Inductive (fluorescent)		Resistance		Motors		
Switch rating	Volts	Amps	Volts	Amps	Volts	Amps	Volts	HP	Amps
15A, 120V/AC	120 AC	15	120 AC	15	120 AC	15	120 AC	1/2	12
20A, 120V/AC	120 AC	20	120 AC	20	120 AC	20	120 AC	1	16
15A, 120/277V/AC	120 AC	15	277 AC	15	277 AC	15	120 AC	1/2	12
15A, 120/27/V/AC		15		15		15	240 AC	1	12
	120 AC	20		20	277 AC		120 AC	1	16
, 120/277V/AC	120 AC	20	277 AC	20	277 AC	20	240 AC	2	16
							120 AC	2	24
30A, 120/277V/AC	120 AC	30	277 AC	30	277 AC	30	240 AC	2	24

Maximum loads - switches - special use - AC only

Switch rating	Incandescent		Inductive (fluorescent)		Resistance		Motors		
	Volts	Amps	Volts	Amps	Volts	Amps	V/AC	HP	Amps
8A, 120V/AC 15A, 120V/AC	Not suitable		120 AC	8	120 AC	8	Not suitable		
			120 AC	15	120 AC	15			
10A, 240V/AC 3/4HP, 120/240V/AC	Not suitable		250 AC	10	240 AC	10	240V/AC	3/4	12
15A, 120-240V/AC 3/4HP, 120/240V/AC	Not suitable		250 AC	15	250 AC	15	240V/AC	3/4	12
20A, 120V/AC "L" 20A, 250V/AC 1HP, 120/240V/AC	125 AC	20	250 AC	20	250 AC	20	240V/AC	1	12

Switch applications

Chemical resistant properties of common materials in wiring devices

SECTION

Key terms describing material enhancements

Thermoplastic:	Material treated for UV stability to increase tensile strength and decrease discoloration when exposed to UV radiation. Manufactured by injection molding. Superior resistance to impacts, chemical and solvent attack.
Thermoset:	Flame resistant material with dimensional stability. Manufactured by compression molding.
Glass filled:	Glass-filled material (most commonly nylon) yields increased material rigidity and permits operation at a higher temperature.
Nickel plated:	Plating of steel or brass with nickel to increase the corrosion-resistant properties of the metal component.
Zinc plated:	Plating of cold-rolled steel with zinc to increase the corrosion-resistant properties of the metal component or casing.

Materials	Acids	Alcohol	Caustic bases	Gasoline	Grease	Kerosene	Oil	Solvents	Water
Nylon (Thermoplastic)	3	1	1	1	1	1	1	1	1
Polycarbonate (Thermoplastic)	2	1	3	2	2	2	2	3	1
$302 / 304$ Stainless steel	2	1	3	1	1	1	1	2	1
Polyvinyl Chloride (PVC)	1	1	1	1	1	1	1	3	1
Polypropylene (Thermoplastic)	1	1	1	1	1	1	1	2	1
PBT	1	1	2	1	1	1	1	2	1
Rubber \ddagger (Thermoplastic)	2	2	1	3	2	3	1	3	1
Phenolic (Thermoset)	2	1	2	1	1	1	1	1	1
ABS (Thermoplastic)	2	2	1	1	1	2	2	3	1

Chemical resistance factor
1 - Completely resistant - good to excellent for general use when exposed to these factors.
2 - Resistance is fair to good - recommended for limited service when exposed to these factors.
3 - Slow attack. Not recommended for use when exposed to these factors.
*The chemical resistance factor represents general applications. Additional testing is required to determine resistance to chemicals in specific environments.
\ddagger Thermoplastic rubber is representative of Santoprene.
For additional material compatibility details, please contact Eaton at: TechSupport@eaton.com

Compliances, specifications and availability are subject to change without notice.

Eaton Wiring Device Cleaning Instructions

There is a greater awareness of the possibility of contamination on shared surfaces as well as high contact areas, such as wall plates, dimmers, switches, keypads and receptacles. Eaton has developed recommended guidelines for cleaning our products that will not impact the operation or finish of the product.

Eaton Recommended Cleaning Tips

1. Never spray any fluids directly into the device
2. Use a damp rag or single-use wipe to avoid excess liquid penetrating the device.
3. Be sure to wipe up remaining excess liquid after cleaning.
4. Ensure the cleaning agent used does not have harsh chemicals such as bleach, ammonia, highly alkaline or concentrated acids (such as hydrochloric acid that can be found in household cleaners such as toilet bowl cleaners, bathroom tile and porcelain cleaners) as they could damage the device, causing them to become brittle and discolored.
5. Eaton recommends the use of a mild liquid detergent and water to clean the devices. Single use wipes (e.g. Lysol brand or equivalent) are acceptable to use for cleaning the devices, however the single-use wipes cannot contain bleach, ammonia, highly alkaline or concentrated acids.

Eaton Recommended Cleaning instructions

1. Never spray any fluids directly into the device
2. Apply the mild liquid detergent to a damp cloth or paper towel. Single use wipes (e.g. Lysol brand or equivalent) are acceptable to use for cleaning the devices, however single-use wipes cannot contain bleach, ammonia, highly alkaline or concentrated acids.
3. If excess liquid is present, remove by wringing out the cloth or paper towel to avoid liquid penetration into the device.
4. Clean the Eaton device by wiping over the surface with the damp cloth.
5. Remove an excess liquid remaining on the device with a dry cloth or paper towel.

Additional resources for cleaning and disinfectant guidelines include:
The Center for Disease Control website (CDC.gov) provides a resource on disinfection guidelines for areas of your home or workspace. The Environmental Protection Agency (EPA.gov) site provides an up-to-date database of products that meet EPA criteria for use against COVID-19.

For more information:
Eaton's technical support center
Phone (Toll Free): 866-853-4293, option 2

Compliances, specifications and availability are subject to change without notice.

	Device locations		
Protection from	Indoors	Indoors or outdoors	Outdoors with external mechanisms
Limited amounts of falling dirt	NEMA type 1		
Limited amounts of falling dirt and dripping water	NEMA type 2		
Rain, sleet, falling dirt, windblown dust, damage from ice formation		NEMA type 3	
Rain, sleet, falling dirt, damage from ice formation		NEMA type 3R	
Rain, sleet, windblown dust, ice laden operation possible			NEMA type 3S
Windblown dust and rain, splashing water, hose-directed water, damage from ice formation		NEMA type 4	
Corrosion, windblown dust and rain, splashing water, hose-directed water, damage from ice formation		NEMA type 4X	
Falling dirt and settling airborn dust, lint, fibers and dripping non-corrosive liquids	NEMA type 5		
Hose-directed water, entry of water during occasional short-term limited depth submersion, damage from ice formation		NEMA type 6	
Hose-directed water, entry of water during long-term limited depth submersion, damage from ice formation		NEMA type 6P	
Class I, Division 1, groups A,B,C or D hazardous locations (as defined by NEC®, NFPA 70)	NEMA type 7 (commonly referred to as explosion-proof)		
Class I, Division 1, groups A,B,C or D hazardous locations (as defined by NEC®, NFPA 70)	NEMA type 8 (commonly referred to as oil-immersed)		
Class II, Division 1, groups E, F and G hazardous locations (as defined by NEC®, NFPA 70)	NEMA type 9 (commonly referred to as dust-ignition-proof)		
Meets applicable requirements of the Mine Safety \& Health Administration, 30 CFR, part 18		NEMA type 10	
Circulating dust, falling dirt, dripping non-corrosive liquids	NEMA type 12 NEMA type 12K		
Dust, spraying of water, oil and non-corrosive coolant	NEMA type 13		

IP enclosure ratings

	Second digit - protection against penetration of liquids	IP_0	IP_1	IP_2	IP_3	IP_4	IP_5	IP_6	IP_7	IP_8	IP_9K
First digit protection against persons touching \& ingress of solid objects		Nonprotected	Vertical falling of water drops	Falling of water drops at angle up to 15° from vertical	Spraying water (rain) at angle up to 60° from vertical	Splashing water from any direction (360 ${ }^{\circ}$)	Water jets from any direction $\left(360^{\circ}\right)$	Power jetting water	Temporary immersion in water	Continuous immersion in water	High pressure. High temperature water spray from multiple directions and angles.
IPO_	Without protection	IP00									
IP1_	Touching with hand \& solid objects $>50 \mathrm{~mm}$ dia.	IP10	IP11	IP12							
IP2	Touching with finger \& solid objects > 12 mm dia.	IP20	IP21	IP22	IP23						
IP3	Touching with tools, wires, etc. $>2.5 \mathrm{~mm}$ thick \& solid objects $>2.5 \mathrm{~mm}$ dia.	IP30	IP31	IP32	IP33	IP34					
IP4	Touching with tools, wires, etc. $>1 \mathrm{~mm}$ thick \& solid objects $>1 \mathrm{~mm}$ dia.	IP40	IP41	IP42	IP43	IP44					
IP5	Unlimited protection against contact with live parts \& damaging dust deposits	IP50				IP54	IP55				
IP6	Unlimited protection against contact with live parts \& any dust penetration	IP60					IP65	IP66	IP67	IP68	IP69K

Compliances, specifications and availability are subject to change without notice.

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
NEMA Standards publication no.250-1991, enclosures for electrical equipment (1000V max.)

Intended use and description

An enclosure is a surrounding case that provides personnel with protection against incidental contact with enclosed equipment, and simultaneously protects enclosed equipment against specific environmental conditions.

Type 1

Enclosures are intended for indoor use primarily to protect against limited amounts of falling dirt.

Type 2

Enclosures provide a degree of protection, mainly indoors, against limited amounts of dripping water or falling dirt.

Type 3

Enclosures, intended primarily for use outdoors, protect against rain, sleet, wind-blown dust, and damage from external ice formation

Type 3R

Enclosures provide protection primarily against rain, sleet, and damage from external ice formation.

Type 3S

Enclosures protect primarily against rain, sleet, and wind-blown dust, and enable external mechanisms to operate efficiently even when ice laden

Type 4

Enclosures provide protection, both indoors and out, against wind-blown dust and rain, splashing or hosedirected water, and ice damage.

Type 4X

Enclosures used both indoors and out to protect against corrosion, wind-blown dust and rain, splashing or hose-directed water, and damage caused by exterior ice formation.

Type 5

Enclosures used primarily indoors to provide protection against airborne dust and dirt, and non-corrosive liquids.

Type 6

Enclosures provide protection both indoors and out against hose-directed water, water entry during occasional short-term submersion at low-pressure depths, and damage caused by exterior ice formation.

Type 6P

Enclosures protect both indoors and out against hose-directed water, water entry during long-term submersion at low-pressure depths, and ice damage.

Type 12

Enclosures used primarily indoors to protect against airborne dust or dirt, and non-corrosive liquids.

Type 12K

Enclosures with knockouts are used primarily indoors for protection against airborne dust and dirt, and noncorrosive liquids.

Type 13

Enclosures used primarily indoors to protect against dust, as well as accidental spraying by water, oil, or non-corrosive coolants.

Compliances, specifications and availability are subject to change without notice.

UNDERWRITERS LABORATORIES UL50
Standard for enclosures for electrical equipment (10th Edition)

Intended use and description

An enclosure is a surrounding case that protects equipment enclosed within against incidental contact, as well as specific environmental conditions. A complete enclosure shall be provided for all live parts that may be housed in it. Such an enclosure shall be tight and come with a means for mounting, unless it's designed for a special installation, for example, a cast metal junction or pull-box intended for installation in poured concrete.

Type 1

Enclosures are intended for indoor use primarily to protect against limited amounts of falling dirt.

Type 2

Enclosures provide a degree of protection, mainly indoors, against limited amounts of dripping water or falling dirt.

Type 3

Enclosures, intended primarily for use outdoors, protect against rain, sleet, wind-blown dust, and damage from external ice formation

Type 3R

Used primarily outdoors for protection against rain, sleet, and exterior damage caused by the formation of ice.

Type 3S

Used primarily outdoors for protection against rain, sleet, and wind-blown dust, and to enable exterior mechanisms to operate when ice laden.

Type 4

For indoor and outdoor use to protect against windblown dust and rain, splashing or hose-directed water, and damage caused by exterior ice formation.

Type 4X

For protection indoors and out from corrosion, windblown dust and rain, splashing or hose-directed water, and damage caused by exterior ice formation.

USMCA compliant products meet specifications at time of print. Product listing subject to change.
For specific product details visit www.eaton.com/wiringdevices or email TechSupport@eaton.com

Buy American Provision, American Recovery and Reinvestment Act (ARRA) (Section 1605)

ARRA Section 1605 establishes requirements for federal government projects funded with stimulus monies: "None of the funds appropriated or otherwise made available by [the ARRA] may be used for a project for the construction, alteration, maintenance, or repair of a public building or public work unless all of the iron, steel, and manufactured goods used in the project are produced in the United States." Iron and steel used as components or subcomponents of other manufactured construction materials do not need to be produced in the United States. There is no requirement that components and subcomponents be U.S.origin provided the manufactured construction material is "produced in the United States." (FAR 25.001(c) (4)) Section 1605 does not contain a domestic cost requirement. However, the government has not defined "produced" for purposes of the ARRA Buy American provision. Many commentators have adopted the "substantial transformation" test to determine whether a manufactured article is "produced" in the United States for purposes of Section 1605. Section 1605 contains a requirement that the Buy American provision be applied in a manner consistent with U.S. obligations under international agreements. As a result, national treatment is extended to products from countries with which the United States has entered a free trade agreement (e.g., Canada, Mexico, Bahrain, Chile, etc.) and to products from countries that have signed the WTO Government Procurement Agreement. National treatment is also extended to least developed countries (LDCs) (e.g., Bhutan, Mali, Zambia, etc.) but not to Caribbean basin countries (e.g., Belize, Haiti, Bahamas, etc.). Products that are identified as USMCA compliant may qualify under the Buy American Act or ARRA program guidelines. Consult specific project guidelines and compliance requirements to assure suitability for your project needs.

Buy American Act (US Code, Title 41, Section 10 (a-d))
The Buy American Act (often BAA, not to be confused with the Buy America (no " n ") Act) applies to all U.S. federal government agency purchases of goods over certain contract thresholds. The BAA restricts purchases of supplies and construction materials to domestic products, unless an exception or waiver applies. Unmanufactured products must be mined or produced in the United States. There is a two-part test for manufactured articles: (1) article must be manufactured in the United States, and (2) cost of U.S. components must exceed 55\% of the cost of all components in the item. Note: this calculation does not include labor and overhead for final assembly in the United States. The component cost test is waived for commercial-off-the-shelf (COTS) items. (FAR 25.001(c)(1). BAA waivers may be available, often at the discretion of the contracting officer.

Restriction of the use of certain hazardous substances (RoHS) For more information visit eaton.com/us/en-us/products/productstewardship or email ProductStewardship-ES@Eaton.com

[^0]: Compliances, specifications and availability are subject to change without notice.

[^1]: Compliances, specifications and availability are subject to change without notice.

[^2]: Compliances, specifications and availability are subject to change without notice.

[^3]: Compliances, specifications and availability are subject to change without notice.

[^4]: Compliances, specifications and availability are subject to change without notice.

